Skip to main content

Bipointed sets

GAT signature

⦃ X : U
, x : X
, y : X

Algebras and Homomorphisms

B-Alg  :=\mathfrak{B}\operatorname-\mathsf{Alg}\;:=

  • X ⁣:SetX\colon\mathsf{Set}
  • x ⁣:Xx\colon X
  • y ⁣:Xy\colon X

B-Hom  (X0,x0,y0)  (X1,x1,y1)  :=\mathfrak{B}\operatorname-\mathsf{Hom}\;(X_0,x_0,y_0)\;(X_1,x_1,y_1)\;:=

  • XM ⁣:X0X1X^M\colon X_0 \to X_1
  • XM(x0)=x1X^M(x_0) = x_1
  • XM(y0)=y1X^M(y_0) = y_1

Initial Algebra

  • B:=Tm  B  (El  2)\mathbb{B} := \overline{\mathsf{Tm}}\;\mathfrak{B}\;(\mathsf{El}\;2)
  • p:=1 ⁣:Tm  B  (El  2)p := 1\colon \overline{\mathsf{Tm}}\;\mathfrak{B}\;(\mathsf{El}\;2)
  • q:=0 ⁣:Tm  B  (El  2)q := 0\colon \overline{\mathsf{Tm}}\;\mathfrak{B}\;(\mathsf{El}\;2)

Displayed Algebras and Sections

B-DAlg  (X,x,y)  :=\mathfrak{B}\operatorname-\mathsf{DAlg}\;(X,x,y)\;:=

  • XD ⁣:XSetX^D \colon X \to \mathsf{Set}
  • XD  xX^D\;x
  • XD  yX^D\;y

B-Sect  (X,x,y)  (XD,xD,yD)  :=\mathfrak{B}\operatorname-\mathsf{Sect}\;(X,x,y)\;(X^D,x^D,y^D)\;:=

  • XS ⁣:(z ⁣:X)XD  zX^S \colon (z \colon X) \to X^D\;z
  • XS  x=xDX^S\;x = x^D
  • XS  y=yDX^S\;y = y^D