
A

Generalized Algebraic Theory
of

Directed Eqality

by

Jacob Neumann

A thesis submitted to the University of Nottingham for the degree of
Doctor of Philosophy

School of Computer Science
University of Nottingham

June 2025

Abstract

We develop a directed type theory capable of synthetic reasoning about 1-categories,
with straightforward semantics in the category of categories. All our semantic notions
are defined as generalized algebraic theories, permitting modular reasoning about
different type theories and ensuring the existence of initial syntax models.

We define the category model of type theory—the directed analogue of Hofmann
and Steicher’s groupoid model—where contexts are interpreted as categories and types
as (split opfibrant) displayed categories. Adapting the groupoid model semantics of
key type formers, (dependent) functions and identity types in particular, requires us to
adopt a modal typing discipline to track the variances of terms. We define a succession
of model notions—polarized categories with families, neutral-polarized categories with
families, and directed categories with families—to abstractly capture more and more
of the type theory of the category model; this includes an axiomatization of how the
groupoid model’s undirected type theory is situated inside the category model’s directed
type theory.

The symmetric (i.e. invertible) identity types of the groupoid model become directed
hom-types of the category model; we can show by metatheoretic argument that our
polarized typing discipline prevents invertibility of hom-types from being provable in
our directed type theory. Each type therefore has the structure of a synthetic category
and each function a synthetic functor; this is all proved within the theory using the
eliminator for hom-types, directed path induction. We expound a new style of category-
theoretic reasoning appropriate to this setting, where the universal mapping properties
of standard category theory are all phrased as principles of induction.

To support these developments, we outline generalized algebra, the mathematical
discipline concerned with generalized algebraic theories. In particular, we highlight
the construction of an initial algebra for every GAT (which is what guarantees a syntax
model for the notions of model we use) and the fact that every GAT gives rise to a
“concrete category with families”, a model of type theory whose contexts are algebras
and types are displayed algebras. The groupoid and category models can be viewed as
a modification of the concrete CwFs of groupoids and categories, respectively, which
ensures the fibrancy of their types.

Acknowledgments

When I was younger, I first heard the phrase, “count your blessings.” Taking it to heart,
I went off to university to learn how to count past infinity. There are countless people
for me to thank for making this thesis possible; let me try to name some of them.

I’m so fortunate to have spent the past four years in the Functional Programming
Lab at the University of Nottingham, and be a part of the amazing group there. First and
foremost, I must thank my advisor, Thorsten Altenkirch, for his constant mentorship,
for endless questions (many of them insightful), and for hundreds of conversations
about every aspect of this thesis (and more). Many thanks also to Graham Hutton for
all his encouragement and for making the FP Lab such an excellent environment for
us all; and thanks to the other faculty of the Lab—Ulrik Buchholtz, Nicolai Kraus, and
Dan Marsden—for all the ways they’ve influenced my thinking. I’m also tremendously
grateful for Tom de Jong; Tom is someone we all look up to (both physically and
aspirationally), and someone I could always trust to provide honest, helpful feedback.
And all my love to my fellow (former) PhD students in the Lab: Josh Chen and Stefania
Damato were there with me the entire time, and I had some years with Zac Garby,
Brandon Hewer, Aref Mohammadzadeh, Stiéphen Pradal, Johannes Schipp von Branitz,
Filippo Sestini, Zhili Tian, Mark Williams, and Sky Wilshaw.

Two very formative experiences for the development of this thesis were my short-
term scientific missions1 to Budapest and Tallinn. Many thanks to my hosts, Ambrus
Kaposi and Niccolò Veltri, respectively, and to all the students and researchers I worked
with on these trips (especially Andrea Laretto) for some excellent conversations. And
thanks to Tarmo Uustalu for finding a place for me in Reykjavik (and for reminding me
which part of this thesis is most important!).

Some other folks (not otherwise mentioned) whom I’ve been lucky to know these
past four years, and who influenced this thesis include:2 Cass Alexandru, Carlo Angiuli,
Jonathan Arnoult, Fredrik Bakke, Viktor Bense, Rafaël Bocquet, Thea Brick, Evan Cav-
allo, Fernando Chu, Roy Crole, Bruno da Rocha Paiva, Martin Escardó, Eric Finster,
Thiago Felicissimo, Fredrik Nordvall Forsberg, James Gallicchio, Daniel Gratzer, Harri-
son Grodin, Chris Grossack, Bob Harper, Philipp Joram, Moana Jubert, Thomas Lamiaux,
Paul Levy, Axel Ljungström, Rasmus Møgelberg Vincent Moreau, Paige North, An-
dreas Nuyts, Daniël Otten, Andor Pénzes, Chris Purdy, Till Rampe, Philip Scott, Artem

1This publication is based upon work from COST Action EuroProofNet, supported by COST (European
Cooperation in Science and Technology, www.cost.eu).

2I’m sure I forgot some names!

iii Chapter 0. Acknowledgments

Shinkarov, Matteo Spadetto, Sam Speight, Ayberk Tosun, Sam Toth, Taichi Uemura,
Phil Wadler, Jonathan Weinberger, Kobe Wullaert, Szumi Xie, Errol Yuksel, Max Zeuner,
and Colin Zwanziger.

I would not be the researcher (or person) I am, had it not been for the formative
time I spent in the Carnegie Mellon University Philosophy Department. Many of the
core topics of this thesis are things I learned at CMU: Jonas Frey taught me what a
‘CwF’ is; I learned HoTT from Egbert Rijke;3 I learned my first proof assistant, Lean,
from Jeremy Avigad;4 I didn’t really understand the Yoneda Lemma until I worked
as Mathieu Anel’s teaching assistant; Steve Awodey taught me categorical semantics
of type theory;5 and Steve, Adam Bjorndahl,6 Kevin Kelly, and Wilfried Sieg taught
me everything I knew about mathematical logic. And there are countless others who
influenced and shaped me, for whom I’ll be forever grateful.

I was also profoundly shaped by the community surrounding CMU’s 15-150 Princi-
ples of Functional Programming course: my time as a 150 TAwas absolutely fundamental
to my whole approach to teaching, and the two times I taught the course myself were
among the greatest and most exciting challenges of my career so far. I’ll always be
thankful for Jonathan Merrin, Dilsun Kaynar, and Vijay Ramamurthy for seeing poten-
tial in me (even when I didn’t see it in myself); for the excellent professors I worked for
(Dilsun, Steve Brookes, Mike Erdmann, and Frank Pfenning); the dozens of amazing
TAs I got to work with; my coinstructors in the offshoot student-taught course Hype
for Types; and our thousands of students. Functions are values, forever.

Many thanks also to everyone who nurtured my nascent love of mathematics and
programming when I was in high school, especially Mr. Esparza, Mr. Fornstrom, Dr.
Mocanasu, Dr. Schaeffer Fry, and all the YouTube channels I used to teach myself
calculus.

Thanks to anyone who’s ever said a kind word about my ideas, my teaching, my
art, my photography, my videos.

Lots of love to my extended family—in Milwaukee, Missouri, Pittsburgh, San Diego,
and elsewhere—thank you for making me who I am. And love to all the friends I’ve
made along the way, and all the communities I’ve been lucky to be a part of.

And, most of all, thanks to my parents, my sister, and my brother-in-law7 for their
constant love and support. I couldn’t have done it without you!

3And I am proud to have been in the zeroth generation of guinea pigs for his textbook, [Rij22].
4And I remember him being especially patient in explaining Σ-types to me.
5And I’ll always be grateful for Steve’s support in 2021 when my PhD studentship was questionable.
6To whom I also owe tremendous thanks for supervising my master’s thesis, for getting me started as

a researcher in the first place, and for finding work for me in Fall 2020.
7And to Fabio, the wisest and most benevolent chihuahua to ever grace the Earth

Contents

Abstract i

Acknowledgments ii

Contents iv

0 Introduction 1
0.1 Motivation . 1
0.2 Research Questions . 4
0.3 Related Work . 9
0.4 Contribution . 14
0.5 Metatheory and Notation . 16

List of GATs & Structures 18

1 TypeTheory as a Generalized Algebraic Theory 22
1.1 Specifying Structures as GATs . 25
1.2 The Semantics of Type Theory as a GAT 36

1.2.1 Categories with Families . 37
1.2.2 Type Formers . 44

1.3 A Signature Language for GATs . 54
1.3.1 Introducing GATs . 55
1.3.2 Eliminating GATs . 62
1.3.3 Initial Algebras . 65
1.3.4 Concrete CwFs . 68

1.4 Fibrancy and the Looking-Glass Question 75

2 The Polarity Calculus 86
2.1 Polarity Structure of the Preorder and Category Models 87
2.2 Theory of Polarized CwFs . 95
2.3 Neutrality . 107

2.3.1 Phase Zero . 109
2.3.2 Phase One . 111
2.3.3 Phase Two+ . 124

3 Directed TypeTheory 131
3.1 Directed Equality Types . 133
3.2 Observations and Universes . 149

v Contents

3.2.1 Opposites . 150
3.2.2 Σ-Types . 153
3.2.3 Universes . 157

4 Synthetic-Inductive Category Theory 165
4.1 An Introduction to Informal (1,1)-Directed Type Theory 165

4.1.1 Neutral-Polarized Type Theory 166
4.1.2 Directed Type Theory . 169
4.1.3 Type Formers . 172
4.1.4 Inductive Category Theory . 174

4.2 Binary (Co)Products . 175
4.2.1 Binary Products—Informal . 175
4.2.2 Binary Products—Formal . 178
4.2.3 Binary Coproducts . 182

4.3 Pullbacks and Pushouts . 186
4.4 Functors and Adjoints . 193

4.4.1 Functors and Natural Transformations—Informal 193
4.4.2 Functors and Natural Transformations—Formal 197
4.4.3 Adjoints—Informal . 203

5 Conclusion 206
5.1 Research Questions Reprised . 206
5.2 Some Suggestions for Future Work . 209

Bibliography 211

A Generalized Algebraic Theories 219
A.1 Basic structures . 219

A.1.1 Sets . 219
A.1.2 Pointed Sets . 219
A.1.3 Bipointed Sets . 220
A.1.4 Natural Number Algebras . 220
A.1.5 Even-Odd Algebras . 221
A.1.6 Monoids . 221
A.1.7 Groups . 222

A.2 Quiver-like structures . 222
A.2.1 Quivers . 222
A.2.2 Reflexive Quivers . 223
A.2.3 Preorders . 223
A.2.4 Setoids . 224
A.2.5 Categories . 225
A.2.6 Groupoids . 226

A.3 Models of Type Theory . 228
A.3.1 Categories with Families (CwFs) 228
A.3.2 CwFs /w unit type . 230
A.3.3 CwFs /w bool type . 231
A.3.4 CwFs /w Π-type . 232

Contents vi

A.4 Models of Polarized and Directed Type Theory 233
A.4.1 Polarized Categories with Families (PCwFs) 233

Chapter 0

Introduction

0.1 Motivation
A pivotal moment in the history of category theory was Saunders Mac Lane’s visit to
France in the summer of 1954. It was likely during this time that Mac Lane had his
now-legendary meeting at Gare du Nord with a young Nobuo Yoneda, and learned of
the great lemma which now bears the latter’s name [Le 16]. It was also when Mac Lane
attended the Bourbaki congress in Murol, and tried to convince its members to embrace
the (then new) language of category theory [Le 22]. As Bourbaki’s internal newsletter,
La Tribu, No. 34 [Bou54] relates, he was unsuccessful:

“Frightened by the disorder of the discussions, some members had brought a
world-renowned efficiency expert from Chicago. This one, armed with a hammer,
tried hard and with good humor, but without much result. He quickly realized
that it was useless, and turned, successfully this time, to photography”

In subsequent decades, Bourbaki persisted in avoiding explicit category-theoretic lan-
guage, even as the content of subsequent volumes of the Eléments adopted ideas from
category theory [Cor03, pp. 372–373].

Fundamentally, Bourbaki and Mac Lane had different views of what constituted
a “mathematical theory”: whether the essential content attached to each notion of
“structure” is a notion of isomorphism or of morphism. For Bourbaki, isomorphisms were
the fundamental consideration: quoting André Weil,1

“About 1936 the collaborators of N. Bourbaki agreed to adopt the notion of
structure, and its associated one of isomorphism, as a fundamental principle for
the classification of mathematical theories.”

To use category-theoretic parlance,2 the Bourbaki viewwas (apparently) that the essence
of a mathematical theory constitutes a groupoid—a universe of structures and the

1Quoted in [Cor03, p. 381].
2In case it wasn’t clear on which side of the argument this author falls.

0.1. Motivation 2

structural isomorphisms between them—and that homomorphisms were an auxiliary
concern. From this viewpoint, the category-theoretic view—that the essence of a
mathematical theory is rather a category, i.e. a universe of structures and structure-
preserving morphisms3—was evidently perplexing: quoting Weil’s letter to Chevalley,4

“As you know, my honorable colleague Mac Lane claims that every notion of
structure necessarily implies a notion of homomorphism, which consists in indi-
cating for each data constituting the structure, those which behave covariantly
and those which behave contravariantly…What do you think can be gained from
this kind of considerations?”

Most contemporary mathematicians would not share Weil’s skepticism here. Even
if one is not working explicitly with category-theoretic tools, there is undoubtedly
something to be gained by considering the structure-preserving morphism appropriate
to whatever kind of “structure” one is studying; or, at the very least, the notion of
“structure-preservingmorphism”makes sense. Wemight regard this as a kind of central
dogma of category theory for any kind of mathematical object one can define, there
is a corresponding notion of morphism. That is, every notion of structure inherently
gives rise to a category. As Eilenberg and Mac [EM45] advise us, the formulation of
this morphism notion is part and parcel of defining the notion of “structure” itself:

“whenever new abstract objects are constructed in a specified way out of given
ones, it is advisable to regard the construction of the corresponding induced
mappings on these new objects as an integral part of their definition.”

But let us emphasize that the category-theoretic view is only asserting the logical priority
of morphisms over isomorphisms, not that the latter be banished. Indeed, it is within
the category-theoretic framework that isomorphisms obtain their proper treatment:
as invertible morphisms. Only when we properly understand the directed notion of
morphism can we fully understand the derived symmetric notion of isomorphism.

Viewed against this historical backdrop, there is a striking irony in the contemporary
development of intensional type theory, specifically homotopy type theory: many
of the top category theorists in the world have come together to produce a theory
whose central notion—equivalence—is symmetric, a (significantly improved) version of
Bourbaki-style isomorphism! There’s good reason for this, of course: homotopy type
theory (or “HoTT”) and other related theories descend from the dependent type theory
ofMartin-Löf [Mar75; Mar82], which includes identity types: for any two terms C and C ′
of the same type, there is a type Id(C, C ′) whose terms (if there are any) are identifications
of C and C ′, i.e. proofs or witnesses to the equality of C and C ′. In this conception of
‘identity’—a constructive and proof-relevant one—the assertion “C is equal to C ′” is
not a bare, lifeless judgment that merely is or isn’t the case, but a type of data with its
own internal structure. Homotopy type theory takes Martin-Löf Type Theory (MLTT)
to its logical extreme by contemplating types whose identity types are themselves rich
data structures, such as the circle type S1—which has only one element base : S1, but
whose identity type Id(base, base) is equivalent to the group ℤ of integers. Similarly
to how Eilenberg and Mac Lane described the construction of structure-preserving
morphisms as an “integral part of (the) definition” of a structural concept, in HoTT we

3And that ‘isomorphism’ was merely a derived notion
4Quoted in [Cor03, p. 376].

3 Chapter 0. Introduction

regard the identity types as being defined alongside the type itself—the structure of
the identity types corresponds to the structure of the type. Formally, this is manifested
within the theory as a number of extensionality principles characterizing the identity
types of the various type-constructors. Chief among these is Voevodsky’s univalence
axiom, which equates the identity type Id(-,.) of two types - and . with the type
of equivalences (roughly speaking, isomorphisms) between - and . . This is why
it’s necessary and fitting that HoTT provides a theory centered around a symmetric
notion (equivalences) rather than a directed one: identity is naturally symmetric—from
? : Id(C, C ′), obtain ?−1 : Id(C ′, C)—so identities between types - and . logically couldn’t
correspond to, say, the type of functions - → . .

One important precursor to HoTT, upon whose example we’ll largely base the
present work, is the groupoid model of type theory devised by Hofmann and Stre-
icher[HS95]. The type theory of the groupoid model takes the first step towards HoTT
by allowing types like S1 whose identity types can contain many different elements,
but truncates any “higher structure”: the identity types of the identity types cannot
contain multiple elements. More precisely, the principle known as Axiom K [Str93] or
the uniqueness of identity proofs (UIP) for a given type � states that every identity
type Id(C, C ′) between terms C, C ′ : � has at most one element. The groupoid model was
specifically designed to refute UIP in general—types like S1 serve as counterexamples—
but UIP does hold for identity types themselves: given ?, @ : Id(C, C ′), there can be at
most one term of type Id(?, @).

We take inspiration from a few particular aspects of the groupoid model.
• The groupoid model is a model, that is, a mathematical structure (specifically a

category with families, or CwF) providing denotational semantics of the formal
language of type theory. This provides a means to make metatheoretic arguments:
since the groupoid model validates all the rules of MLTT but does not validate
UIP, we can deduce that UIP is not provable from just the rules of MLTT.

• Though it’s truncated nature does not permit it to model full HoTT and full uni-
valence, it does have a truncated version. Namely, the groupoid model interprets
a universe of sets, a type classifying all the sets (types that do validate UIP) in the
theory. The truncated version of univalence—which Hofmann and Streicher call
universe extensionality—is that the identity type Id(-,.) between two sets
corresponds to the type of bijections between - and . .

• The groupoid model is so named because it is built out of groupoids. In order
to interpret a type theory, i.e. fulfill all the different components of a CwF, the
groupoid model must provide an interpretation for all the structural components
of a type theory, specifically contexts, substitutions, types, and terms. The groupoid
model uses groupoids for all these: contexts are groupoids, substitutions are
groupoid functors, types are families of groupoids, and terms are sections of
families of groupoids.

• The groupoidmodel deserves its name for another reason: its type theory provides
a synthetic theory of groupoids. Every type � in this type theory has the
structure of a groupoid: the objects of the groupoid � are the terms C : � and the
morphisms from C to C ′ are the terms of type Id(C, C ′). This is a category because
identity is reflexive (for each C , obtain reflC : Id(C, C)) and transitive (terms of type
Id(C, C ′) and Id(C ′, C ′′) can be combined to get a term of type Id(C, C ′′)); this is a

0.2. Research Questions 4

groupoid because of the aforementioned symmetry of identity: every “morphism”
? : Id(C, C ′) has an inverse ?−1 : Id(C ′, C). So any type which can be written down
in this theory automatically has the structure of a groupoid, any function has the
structure of a groupoid functor, and so on.

The combination of these last two points will be of special interest to us: it’s a model
built out of groupoids, whose type theory is a synthetic theory of groupoids—somehow
the groupoids have gained the ability to talk about themselves!

So, returning to the point: what is the non-symmetric version of this story? Can we
replace groupoids with categories, and consider a category model whose type theory
furnishes a synthetic category theory? Is there a version of identity types which
isn’t symmetric, and whose univalence principle relates them not to equivalences/iso-
morphisms/bijections but to functions? These question are the impetus for directed
type theory. Instead of considering identity types Id(C, C ′), directed type theory con-
siders hom-types Hom(C, C ′), a directed notion of equality. Now, the reason that
directed type theory didn’t precede usual, undirected type theory is because it’s much
trickier to get right: in order to, as Weil says, “indicat(e) for each data constituting the
structure, those which behave covariantly and those which behave contravariantly,”
is an exceedingly subtle art. A few proposals were put forward (e.g. [LH11; Nor19;
Nuy15; ANvdW23]) for such a calculus of polarity, a modal typing discipline for
explicitly tracking variances, but no consensus has emerged for how exactly to carry
this out. Indeed, the most developed directed type theories to date—particularly ones
that seek to give the directed analogue of all the higher structure of HoTT, i.e. provide a
language for synthetic∞-category theory—avoid having a polarity calculus at all,5 and
fashion a directed type theory using techniques from simplicial and cubical type theory.
Among those that do adopt a polarity calculus, North [Nor19] is (to our knowledge)
the only one who defines the category model, and doesn’t develop adequate syntax to
match all the features of the groupoid model (dependent types, the universe of sets,
the universe extensionality/univalence principle) or conduct synthetic category theory.
So the task of defining the category model and developing it enough to do synthetic
category theory remains unfinished. That is the purpose of the present work.

0.2 ResearchQuestions
We organize our investigation around the following questions, which approximately
correspond to the chapters of this thesis.

5From [RS17, p. 2]:

“Moreover, interpreting types directly as (higher) categories runs into various
problems, such as the fact that …there are numerous different kinds of “fibrations”
given the various possible functorialities and dimensions of categories appearing
as fibers.
There is no reason in principle to think these problems insurmountable, and
many possible solutions have been proposed. However, in this paper we pursue a
somewhat indirect route to a synthetic theory of higher categories”

5 Chapter 0. Introduction

Research Question 1. What is an appropriate semantics-driven methodology for
developing directed type theory and synthetic category theory?

We take the main task of the present work—the explication of the category model—
as an opportunity to perform a deep methodological reflection on the semantics of
type theory. In designing a formal language towards a particular purpose (in our
case, synthetic category theory), one finds oneself in a precarious situation: there is
an ever-present temptation to “just add more axioms” to prove whatever one needs,
but, as demonstrated by the issue of consistency that bedevils mathematical logic,
reckless postulation can get one in serious trouble. A semantics-driven approach,
where new postulates must first be checked against a desired model (or class of models),
addresses the consistency concern but opens up a new consideration: initiality. In
many frameworks for the semantics of type theory, it is a difficult task to reify the
syntax of the type theory as a term model and prove that this term model is the initial
object in the category of models. So long as the initiality conjecture remains open for a
given theory and class of models, we cannot be assured that the syntax and semantics
interact in the way we expect.

We therefore highlight the theory of generalized algebraic theories, or GATs,
as a robust approach for studying type theories and their semantics. The crucial
benefit of GATs is that each GAT automatically comes equipped with an initial model.
Therefore, if we can express our notion of ‘model of type theory’ as a GAT—as we can,
in the aforementioned notion of CwF—then the initiality conjecture is already solved.
Moreover, we can continue to extend the notion of CwF to include more type theoretic
constructs and, so long as these extensions still constitute a GAT, the initiality claim
is preserved. In particular, this will allow us to extend the GAT of CwFs to a GAT of
directed CwFs, i.e. models of directed type theory. Since we adopt a semantics-driven
approach, only adding to the GAT of directed CwFs those axioms which we can validate
in the category model, we have a constant guarantee that we are justified in speaking
of the “syntax of directed type theory” as the initial directed CwF.

Some intriguing methodological considerations also come into play when conduct-
ing synthetic category theory in the syntax of directed type theory. We will want to
introduce category-theoretic notions (like ‘product’, ‘exponential’, ‘adjunction’, etc.)
in a format better suited to our language, but reassure ourselves that these concepts
coincide to their usual meaning. We’ll adopt a two-step approach for doing so: first,
we’ll demonstrate synthetically (that is, within the synthetic category theory) that the
usual universal mapping property of these concepts can be derived from our formulation,
and thus we know our formulation is at least as strong as the usual one. Secondly, we’ll
demonstrate analytically that our notion is not any stronger: we’ll interpret (by way of
the initiality of the syntax in the category of directed CwFs) the statement of our notion
into the empty context of the category model—where the types are literally categories
and the terms are literally objects, and show that the usual notion entails ours. This is
a unique methodology, unlocked by the category model’s auto-synthetic potential: it’s
only possible to perform this analysis because we’re doing synthetic category theory,
interpreted in a model built from categories.

0.2. Research Questions 6

Research Question 2. How can the groupoid model’s uses of symmetry be made
explicit in the syntax of type theory?

As mentioned above, the style of directed type theory appropriate to the category
model is one which adopts a polarity calculus, a modal typing discipline for tracking and
enforcing the variance of terms. This is necessary when trying to devise the directed
analogue of the various constructions in the groupoid model: of course, the groupoid
model constructions make free use of the fact that the contexts and types are interpreted
in groupoids by inverting arrows as needed. Since we are interpreting our type theory
into categories, we must instead pay careful attention to which “direction” of arrow we
need. Our version of dependent type theory will be restricted in various ways, in order
to ensure that all the dependencies involved are not just functorial (as they are in the
groupoid model), but functorial with the correct variance.

In chapter 2 and chapter 3, we will encounter a number of these polarity prob-
lems—obstacles to copying the groupoid model definition directly into the category
model. These come in three different varieties.

• A shallow polarity problem is one that arises because types in the groupoid
model are interpreted as families of groupoids. For instance, modifying the
formation rule of the Id type former to the formation rule of Hom presents a
shallow polarity problem. Shallow polarity problems are, generally speaking,
the easiest to address: we just need to annotate the types involved to indicate
whether terms of those types are appearing covariantly or contravariantly: in
Hom� (C, C ′), C is contravariant and thus gets a negative annotation, whereas C ′
appears covariantly and gets a positive annotation.

• More imposing are the deep polarity problems: ones which rely on the fact
that contexts are interpreted as groupoids in the groupoid model. To solve deep
polarity problems, we’re required to have polarity annotations on the context. The
construction of Π-types presents a deep polarity problem: the groupoid model
semantics of Π-types makes essential use of the fact that contexts are groupoids
(not arbitrary categories). This is why North [Nor19] does not have Π-types but
Licata and Harper [LH11] do: the latter adopts a deep polarity calculus with
annotations on the contexts (and can therefore handle deep polarity problems),
where the former only has shallow polarity.

• Finally, there are some polarity problems which do not seem to admit a satisfac-
tory solution, even with the combined shallow- and deep-polarity calculus—the
groupoid model semantics is simply too reliant on the invertibility of morphisms
to be successfully rendered in the directed setting. We articulate a solution to
many of these problems (in particular, some of the key polarity problems that
must be solved in order to have synthetic category theory) in section 2.3. Our
solution is a partial retreat from the fully directed setting: we work in groupoid
contexts in the category model, which we abstractly articulate as neutral contexts.
Neutral contexts ameliorate many of the most frustrating aspects of working in a
deeply-polarized type theory, and provide an appropriate setting for synthetic cat-
egory theory; for instance, it is only in a neutral context that a synthetic category
(i.e. a type) has the same objects (terms) as its opposite category. Neutrality does
not exhaust the polarity problems (for instance, directed function extensionality

7 Chapter 0. Introduction

remains at-large), but the present work demonstrates just how far into directed
type theory/synthetic category theory it will get us.

Research Question 3. What is directed equality, and how does it work?

The purpose of identity types in Martin-Löf Type Theory is to internalize the
metatheoretic notion of “sameness”, i.e. judgmental equality: the assertion that C and
C ′ are judgmentally equal is not a statement in type theory, but the type Id(C, C ′) is:
we can, for instance, write functions which accept a term of type Id(C, C ′) as input or
produce one as output. We can accordingly understandHom types as internalizing some
metatheoretic notion of directed equality, such as reduction/evaluation or conversion.
Part of our goal in the present work is to understand what directed equality is and
means. In section 3.1, we’ll adopt a number of interpretations of directed equality: as
the directed paths of directed homotopy spaces, as reductions in a rewriting calculus,
and as temporal-computational processes. These different perspectives will help give
us intuition for working with these types, and guidance for future development.

The (undirected) type theories we’re interested in—the theory of the groupoid model
and HoTT among them—are intensional type theories: the notion of “equality” given by
identity types, i.e. propositional equality, is coarser than the metatheoretic judgmental
equality—the type Id(C, C ′) can be inhabited without C and C ′ being judgmentally equal.
This is in contrast to extensional type theories, where terms of the identity type Id(C, C ′)
can be “reflected” to a judgmental equality C = C ′; the theory of the groupoid model
and HoTT cannot be extensional, as extensionality implies UIP, which these theories
explicitly reject. That said, we don’t wish to swear off extensionality completely: we
wish our intensional theories to admit a limited set of extensionality principles, which,
roughly speaking, relate the structure of the identity types between terms of type � to
the structure of� itself. Function extensionality is a prime example: if we know that
two functions are pointwise (propositionally) equal (i.e. we have i (G) : Id(5 (G), 6(G))
for arbitrary G), we wish to conclude that the functions themselves are equal, i.e.
have a term funext(i) : Id(5 , 6). Univalence, i.e. “universe extensionality”, is another
such principle. The groupoid model, a product of the “extensionality principles in
intensional type theory” tradition, validates both function and universe extensionality.
HoTT extends the universe extensionality of the groupoid model to full univalence,
which is indeed capable of proving many extensionality principles, including function
extensionality [Uni13, Section 4.9] and the characterization of the identity types of
Σ-types [Rij22, Section 9.3].

As the directed analogue of the theory of the groupoid model, the directed type
theory of the present workwill be directed-intensional. That is, the propositional directed
equality of Hom-types will be coarser than the judgmental directed equality. But we
too will want to import some directed extensionality principles. Though a thorny
polarity problem prevents us from being able to state directed function extensionality
(that the hom-terms between functions are synthetic natural transformations), we will
have directed universe extensionality/univalence: the hom-terms between sets
are given by functions between those sets. We also characterize the hom-types of
Σ-types, giving us (the beginnings of) a structure morphism principle (analogous
to the structure identity principle of undirected type theory), which tells us that homs

0.2. Research Questions 8

of “structures” are given compositionally in terms of the definition of the structure
itself—making the aforementioned “central dogma of category theory” concrete in our
synthetic setting.

ResearchQuestion 4. What does synthetic category-theoretic reasoning in the directed
type theory of the category model look like?

Moving from undirected type theory to directed type theory, Id-types to Hom-
types, means replacing the synthetic groupoid theory of the groupoid model with the
synthetic category theory of the category model. In the category model, the types will
have the structure of synthetic categories: the ‘objects’ of the category are the terms
of the type, and the ‘hom-set’ between two such ‘objects’ C and C ′ is the hom-type
Hom(C, C ′). It is a synthetic category theory because there’s no such thing as proving
that something constitutes a category—any type we can possibly write down in this
theory is automatically is equipped with the structure of a category. Moreover, the
functions 5 : �→ � we can express in this theory are automatically functors on the
categories �, �—there’s no need to define the morphism part and check functoriality;
this comes for free.

However, having categories is not the same thing as doing category theory: we
want to have a framework for discussing the main ideas of (at least basic) category
theory—like (co)limits, adjunctions, and representables—in our synthetic setting. This
raises the question: what should that framework look like? Do we just want to use the
available dependent types to express the usual category-theoretic definitions verbatim,
or is there something more specialized to our setting which we can do?

The inspiration for our answer comes from directed path induction. Analogously to
undirected intentional type theory, the directed equality types of the categorymodel will
come equipped with an elimination principle, the J-rule or directed path induction.
Or, rather, by duality, it will comewith two: a forward, or coslice path induction principle,
and a backward, slice path induction principle. As with undirected path induction, these
will allow us to prove statements generically about morphisms by proving them for
the identity morphism, refl. Syntactically and semantically, these principles boil down
to the fact that the identity morphism is initial in the coslice category and, dually,
terminal in the slice category. Here we find the germ of our approach to synthetic
category theory: the fact that refl is initial among coslices is not phrased as the standard
category-theoretic universal mapping property (“for all coslices, there exists a unique
map, …”) with the quantifiers replaces by dependent types. No, it’s captured here as
a principle of induction. We carry this throughout basic category theory: we define
‘(co)products’, ‘pullbacks’, ‘pushouts’, ‘exponentials’, ‘adjoints’, etc. in our theory, as
structures equipped with principles of induction. As mentioned above, we’re able
to verify that these articulations do indeed correspond to the standard notions by (a)
verifying that the universal mapping property can be derived from the principle of
induction within the synthetic category theory, and (b) seeing that the principles of
induction are validated by the usual structures in the empty context of the category
model.

9 Chapter 0. Introduction

0.3 Related Work

Models of Type Theory

Category-theoretic semantics for dependent type theory have been developed from a
variety of different approaches, with each emphasizing different aspects and permit-
ting generalization/weakening in different directions. We refer the reader to recent
work by Ahrens, Lumsdaine, and North [ALN25] for a more exhaustive survey of
what they (aptly) call a “veritable zoo” of different concepts. The notion of ‘model
of type theory’ which we’ll adopt has been articulated in numerous equivalent ways,
including categories of attributes [Car78, Section 3.2],[Mog91]; discrete comprehension
categories [Jac93]; natural models [Awo18]; and categories with families [Dyb95; Hof97].
We prefer the latter formulation, categories with families (CwFs): among these equiva-
lent notions, CwFs provide the closest link to the syntax of type theory, are the most
readily-expressible as a generalized algebraic theory, and are particularly suitable for
formalization [BD08].

We develop models of type theory to permit metatheoretic reasoning. In particular,
they serve two purposes: demonstrating the independence of certain statements in the
theory (i.e. that the rules cannot prove said statements), and soundness results (that
a given axiom/construct can be added to the theory without causing inconsistency
or paradox). As discussed above, a celebrated example of the former is Hofmann and
Streicher’s use of the groupoid model to demonstrate the independence of UIP from
the laws of Martin-Löf Type Theory [HS95]. We draw inspiration from this, using the
category model to prove symmetry independent of our system of directed type theory.
We also take inspiration from several soundness results, such as the setoid model of type
theory6—whose original purpose was to demonstrate the soundness of adding quotient
types [Hof95a] and function extensionality [Alt99] to intensional type theory— and
the use of presheaf models [Hof97, Section 4] to justify cubical type theory [BCH14;
CCHM18]. We develop the directed analogue of the setoid model, the preorder model,
including a statement of the fibrancy data inherent to its types, analogous to the one
given in [ABK+21] for the setoid model. Though our main investigation doesn’t make
use of presheaf models, we rehearse them in section 1.2 as particularly nice examples
of CwFs, including their semantics for type universes [HS99].

Generalized Algebraic Theories

Generalized algebraic theories (GATs) were introduced by Cartmell [Car78; Car86] to
study equational theories with dependent sorts. A paradigm example ([Car86, pp. 212–
213], reproduced here as Example 1.1.11) of a theory requiring such dependency is that
of categories, which have a sort of objects and a family of sorts—the hom-sets—doubly
indexed over objects. We follow [KKA19] and [BCDE20] in modifying Cartmell’s notion
of GATs to (a) exclude the possibility of equations between sorts (instead only allowing
equations between elements of a given sort); and (b) be articulated in an intrinsically well-

6Weuse Altenkirch’s formulation, which takes “setoids” to be sets equipped with equivalence relations,
rather than Hofmann’s formulation, which uses partial equivalence relations, i.e. doesn’t assume
reflexivity.

0.3. Related Work 10

formed manner (as opposed to Cartmell’s definition, which defines GATs by restricting
pre-syntax by a well-formedness relation).

section 1.3 and subsection 1.3.4 are largely a re-presentation of the results of
[KKA19]: we give a signature language for GATs which is a fragment of their sig-
nature language of quotient inductive-inductive types, and use their definitions of
algebra, homomorphism, displayed algebra (a generalization of the displayed cate-
gories of [AL19]), etc. This signature language is itself a quotient inductive-inductive
type [Dij17] in the metatheory, following [AK16; Kap17]. Most significantly, we follow
[KKA19] in using this language to define an initial algebra for every GAT; when the
GAT in question is (extensions of) the GAT of CwFs, then this is the construction of a
syntax model.

Though it doesn’t play an explicit role in the presentwork, several of our developments—
the results of section 2.2 in particular—anticipate a treatment of this style of directed
type theory as a second-order generalized algebraic theory (SOGAT). SOGATs were
introduced by Uemura [Uem23; Uem21] as a general framework for studying type theo-
ries; they have the benefit of automating much of the bureaucracy of GAT presentations
of formal theories [KX24] by operating in a higher-order abstract syntax, and can be
interpreted in presheaf models [Hof99]. At present, it remains an open problem to
study substructural type systems in the SOGAT setting, though the technique used in
[ACKS24] to study parametricity in the SOGAT setting may provide a solution.

Extensionality

A recurring theme across the past few decades of intensional type theory research has
been the quest to incorporate extensional principles within intensional type theory,
thereby obtaining the benefits of extensional type theory without its considerable
downside (undecidable typechecking). This includes the aforementioned use of the
setoid and groupoid models to justify the addition of function extensionality and “uni-
verse extensionality” to intensional type theory [Hof95b; Alt99; Hof95a; HS95; Alt21]
as well as the univalence axiom [Voe14a; Voe14b] characteristic of homotopy type
theory [Uni13] and its constructive metatheoretic justification in cubical type the-
ory [BCH14; CCHM18]. The standard formulation of these extensionality principles
assert them as equivalences—identities of functions are equivalent to pointwise identi-
ties, identities of types are equivalent to equivalences, etc.—but there is a branch of type
theory—observational type theory—which goes further and makes these extensionality
principles into judgmental equalities, i.e. the definition of identity types. This is done
for the truncated setting (i.e. where UIP is accepted) in [AMS07], but there has recently
been research [Shu22; AKS22; ACKS24] into the prospect of a higher observational
type theory, i.e. a version of HoTT where univalence is not an axiom (as it is in “Book
HoTT” [Uni13]) nor a theorem (as it is in cubical type theory [BCH14; CCHM18]),
but a definition. Though we do not include any explicit treatment of (directed) higher
observational type theory in the present work, we do work out the first-order theory
theory here in anticipation of a hypothetical higher-order treatment in future work.

11 Chapter 0. Introduction

Directed TypeTheory

Existing approaches to directed type theory can be placed into several classes. The
most developed branch of directed type theory is simplicial homotopy type theory
(sHoTT). This approach was initiated by Riehl and Shulman [RS17], and provides a
synthetic language for∞-categories (analogously to how undirected HoTT provides
a synthetic language for∞-groupoids [VG11]). The fundamental idea of sHoTT is to
extend ordinary HoTT with a directed interval and, instead of taking Hom-types as
primitive (as we do here), defines them by functions out of the directed interval; this
approach allows sHoTT to avoid the “polarity problems” inherent to other directed
type theories. The task of developing ∞-category theory in sHoTT was taken up in
particular by Weinberger [Wei22a; Wei24b; Wei22b; Wei24a]; the original system of
Riehl-Shulman has recently been refined by Gratzer, et. al. [GWB24; GWB25] with the
incorporation of multi-modal type theory [GKNB20]; and sHoTT has been implemented
in an experimental proof assistant, Rzk [KRW23]. A related, but distinct, approach is
bicubical type theory [WL20], which, also implements hom-types as maps from the
directed interval. A primary difference between sHoTT and bicubical type theory is
their model theory—the former is modeled in bisimplicial sets (which are generally
nonconstructive) whereas the latter is modeled in constructive bicubical sets; we refer
the reader to Weaver [Wea24] for a more detailed comparison between these systems.

Among directed type theories which do adopt a typing discipline to track polarities,
one prevalent tradition has been so-called two-dimensional theories. Licata and Harper’s
theory [LH11] developed a formal type theory interpreted in the 2-category of cate-
gories, with contexts interpreted by categories, substitutions interpreted by functors,
and directed reductions (a directed, proof relevant replacement for judgmental equal-
ity) interpreted by natural transformations—this latter construct is the reason for the
moniker “two-dimensional” (the present theory would therefore be “one dimensional”,
as we accept the usual undirected judgmental equality of Martin-Löf Type Theory).
The Licata-Harper type theory is notable for interpreting Π-types in the category of
categories; this is possible because they have a negation operator on contexts interpreted
by the opposite category construction, and are thus able to solve the “polarity problem”
we discuss in section 2.2. This theory was developed further by Nuyts [Nuy15], who
added further kinds of variance to account for variables which appear neither negatively
nor positively. However, the semantics of these theories are either somewhat ad-hoc
(Licata-Harper) or not addressed (Nuyts), as noted in [ANvdW23]; this latter work es-
tablishes a more principled, general semantic framework for two-dimensional directed
type theories with the notion of comprehension bicategories. However, a development
of hom-types and directed type theory proper remains to be done in this setting.

Several approaches to synthetic category theory make central use of profunctors
(functors with both a positive and negative component) both syntactically and seman-
tically. In particular, this is useful to address the mixed variance of the term C in the
hom-type Hom(C, C). One abstract category-theoretic treatment of profunctors is in
the notion of double categories—categories with “vertical” and “horizontal” notions of
morphisms, such as the double category of categories, which has categories as objects
but functors and profunctors as two distinct notion of morphism. Naturally, proposals
have been made for directed type theories based on (virtual) double-categorical struc-

0.3. Related Work 12

ture, such as the virtual equipment type theory (VETT) of New and Licata [NL23] and
recent reformulations by Nasu [Nas25; Nas24]. These theories have proved capable
of an impressive amount of synthetic category theory, including a theory of natural
transformations (which eludes the present work); however, semantic reasoning about
such theories seems much more involved than for the present theory, as the math-
ematical structures interpreting the former—hyperdoctrines on split fibrant virtual
double categories—are significantly more complicated. Let us also mention another
profunctor-based approach, the recent theory of Laretto et al. [LLV24], which interprets
terms as difunctors (endo-profunctors) and entailments as dinatural transformations.
Though this theory is not exactly a directed type theory in the sense used here—Hom is
a predicate, not a type-former—it does provide a compelling type-theoretic syntax for
phrasing category-theoretic arguments, particularly from the (co)end calculus [Lor23].

The present theory has the greatest overlap with the directed type theory of
North [Nor19]. Like North’s theory, ours will be “one-dimensional” (in contrast to the
aforementioned “two-dimensional” theories) in that we maintain judgmental equality
as an undirected, metatheoretic notion; our “shallow polarity” (the polarity annotations
on types) works the same as North’s (and has the same semantics); and we adopt the
same hom-formation rule. Also, our basic semantics are the same: our category model
is the same as interpretation of contexts, substitutions, types, and terms given by North.
However, our theory departs from North’s in several key ways.

• Syntactically, we adopt different approaches for solving the “polarity problem”
posed by refl: since our Hom-formation rule demands its domain to be a term
of type �− and its codomain a term of type �, how can a single term C serve
as both the domain and the codomain, as it must in reflC? North solves this by
introducing a core modality on types: for each type �, a type �0, along with
coercion operators 8, 8op sending terms of �0 to terms of � and �−, respectively.
Thus, the term reflC can only be asserted when C is of type �0, and be of type
Hom(8op C, 8 C). This has the advantage of working in an arbitrary context;
however, the resulting principles of directed path induction consequently only
apply when one endpoint is of a core type. Given that North doesn’t include any
constructors for producing terms of core types, it’s unclear if there’s any way
to make proofs about arbitrary hom-terms. Our solution, on the other hand, is
to restrict the context to a “neutral context”, where there’s a general coercion
between terms of � and �−. This eliminates the need for core types,7 and is
quite useful for solving other polarity problems. We suspect our directed path
induction to be equivalent to North’s in a setting with neutral contexts and core
types, but don’t introduce core types explicitly in the present work.

• North’s theory does not include what we call “deep polarity”, i.e Licata-Harper-
style negation operators on the contexts (internalizing the fact that contexts are
categories, and hence have opposites). We regard deep polarity as prerequisite to
a development of dependent types (Π-types specifically) in directed type theory,

7The category model does support core types, with precisely the semantics North gives; they may be
added to a future version of the our theory, as taking the core of a synthetic category is still a useful
operation to consider. It’s unclear if there is a model of the present theory which expressly does not have
core types, so we don’t regard the elimination of core types from the syntax as something likely to result
in a broader class of models.

13 Chapter 0. Introduction

and, moreover, it is needed in the present work to be able to state what a “neutral”
context even is.

We’re aware of ongoing efforts [CMN24; Man24] to extend North’s theory to be able to
support dependent types and do meaningful synthetic category theory. Our preliminary
understanding is that such extensions evidently involve extending the negation and
core operations to contexts after all, and that the resulting polarity calculus seems more
expressive than the one expounded here. However, we defer more detailed comparison
until a more definitive statement of such a theory is given.

An abbreviated version of the present work is available in preprint form as [NA24],
to appear as [NA25]. That work (“the TYPES paper”) differs from the present work in
several ways, including the following.

• The present work includes a detailed development (chapter 1) of ‘generalized
algebra’, our methodology of studying structures using generalized algebraic the-
ories (including the signature languages, oneGAT and nouGAT; the construction
of initial algebras and concrete CwFs, and fibrancy).

• The definition of “NPCwF” given in the TYPES paper corresponds to the “unary
NPCwFs” of the present work (Definition 2.3.25), and does not include the facilities
formulti-variable functions incorporated into the full definition of “NPCwF” given
here (Definition 2.3.44). The definition of NPCwF given in the TYPES paper also
takes both the ee isomorphisms and term-negation as primitive (and axiomatizes
their interaction), whereas the present definition defines term-negation using ee
and includes sufficient axioms to prove the behavior of term-negation (specifically
its involutive property).

• We develop Σ-types in the present work, use the neutral-context operations to
characterize (Σ��)−, and assert a characterization of the hom-types of Σ-types.

• The present work includes a development of transport in the directed setting,
defined using directed path induction.

• The present work asserts that Hom�− (C ′, C) = Hom� (C, C ′), and develops the
principle of slice path induction dual to the usual, “coslice”, principle of directed
path induction (that appears in the TYPES paper).

• The application of functions in informal directed type theory is done using the
app+ operator in the present work, so a function�→ � is applied to an argument
of type �; in the TYPES paper, some of the contravariant structure is kept around
in the informal syntax, so a function �→ � is applied to a term of type �−. The
choice used here is much more convenient, e.g. for defining map.

• The methodology of “inductive category theory”, i.e. phrasing universal mapping
properties as induction principles, does not appear in the TYPES paper. We also
go much further in developing synthetic category theory in the present work:
the notions of (co)product, pullback, pushout, and adjunction do not appear in
the TYPES paper.

• The TYPES paper concludes that natural transformations cannot be treated
component-wise in the present framework. In the present work, we show
that hom-terms between functions can be treated as natural transformations
and applied component-wise; but we still cannot write natural transformations
component-wise.

0.4. Contribution 14

0.4 Contribution
“So my aim here is not to teach the method that everyone must follow for the
right conduct of his reason, but only to show in what way I have tried to conduct
mine.”

René Descartes, A Discourse on the Method

“Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.”

Robert Frost, The Road Not Taken

The purpose of the present work is not, so to speak, to make type theory grow
taller, but rather to see its roots grow stronger and deeper. Perhaps in the future some
version of this theory could serve as the foundation for a synthetic theory of higher-
and∞-categories, and truly provide a directed homotopy type theory. But in this thesis,
we only aspire to parity with the groupoid model and its type theory, that is, to expound
a synthetic theory of 1-categories with semantics in 1-categories. But it is our sincere
hope that a reflection on this more modest mathematical topic might still provide useful
insights to type- and category-theorists of all stripes; moreover, we intend for this work
to serve as a reference point for the “polar style” of directed type theory, a signpost to
guide future investigations. The contributions of this thesis are as follows; the most
significant contributions (by our estimation) are in bold.

Chapter 1: Type Theory as a Generalized Algebraic Theory

• Interpretation of the material from “Constructing QIITs” by Kaposi, Kovács, and
Altenkirch [KKA19] as a mathematical discipline—“generalized algebra”—for
specifying GATs and calculating with them
This includes the construction of what we dub “concrete CwFs”—models of type
theory whose contexts are algebras (of a given GAT), types are displayed algebras,
etc.

• Precise specification of the typical informal style of introducing GATs with a
syntactic sugar language, nouGAT, which compiles down to the less-human-
readable signature language, oneGAT (a fragment of the QIIT signature language
from [KKA19])

• Explicit development and comparison of fibrancy data for displayed preorders,
groupoids, and categories (adapting notions from Ahrens-Lumsdaine [AL19],
expanding on the presentation from [ABK+21]). We articulate this as a restriction
of these concrete CwFs to “fibrant concrete CwFs.”

• Posing of a general question: which GATs are models for a synthetic theory of
themselves (e.g. the groupoid model gives a synthetic theory of groupoids)? This
seems to be essentially the same question as, “for which GATs can we restrict
their concrete CwF to a fibrant concrete CwF?”

15 Chapter 0. Introduction

Chapter 2: The Polarity Calculus

• Definition of the category model (collecting the definition from [Nor19] into a
more elementary and explicit presentation) and the preorder model, the directed
analogues of the groupoid model and the setoid model, respectively

• Articulation of a type theory which combines the “shallow polarity”
(negation operator on types) from North [Nor19] with the “deep polarity”
(negation on contexts and context extension) of Licata-Harper [LH11] in
order to solve a variety of “polarity problems”

• Definition of Polarized CwFs, the abstract model notion appropriate to this type
theory

• Exploration of how each PCwF containswithin it two type theories—one “positive”
and one “negative.”

– In the category model, this corresponds to the CwF structures where types
are (split) opfibrations and fibrations, respectively.

• Development of dependent types in polarized type theory (following Licata-
Harper)

• A demonstration that dependent types are poorly-behaved in arbitrary contexts,
and development of a methodology of neutral contexts within polarized
type theory, where the theory works better

• Abstraction of the salient features of neutral contexts in the notion of Neutral-
Polarized CwF

Chapter 3: Directed TypeTheory

• Statement of directed path induction in neutral contexts
• An account of Hom-types vs. Identity-types, and explanation of how our
J-rule can prove symmetry for the latter but not the former

• Definition of directed CwFs, a family of model concepts parametrized by the two
“dimensions” of “truncation”: how many “levels up” before all parallel morphisms
become equal, and how many “levels up” before all morphisms become invertible

• Explicit treatment of the dual statements of directed path induction as “coslice
path induction” and “slice path induction”, which are inter-derivable (modulo an
observational law concerning the hom-types of opposite categories)

• Development of directed universes, particularly the universe of sets in the cate-
gory model

• Observational rules characterizing the Hom-types of important type constructors,
particularly Σ-types and the universe of sets (giving a rule of directed univalence)

• Metatheoretic reasoning with category model (proving that our J-rule cannot
prove symmetry for non-neutral types), in the tradition of Hofmann-Streicher

Chapter 4: Synthetic-Inductive Category Theory

• Discussion of the syntax model of (1, 1)-directed type theory, and how to work
informally in a neutral context

• Development of the synthetic category structure of types

0.5. Metatheory and Notation 16

• A novel presentation of basic category theory, where the universal map-
ping properties are principles of induction

• Amethodology for verifying that our inductive presentation of category-theoretic
concepts corresponds to the standard notions

• A proof—the directed analogue of the construction of ap—that every function
expressible in (1,1)-directed type theory is automatically a synthetic functor

• A synthetic-inductive treatment of products, coproducts, pullbacks, pushouts,
adjunctions, and (co)limits

0.5 Metatheory and Notation
We work in a constructive type-theoretic metatheory. We’ll write C = C ′ to indicate that
C and C ′ are judgmentally equal, i.e. equal in the metatheory; we generally treat this
notion of equality as intensional, but we do assume the uniqueness of identity proofs
and function extensionality. We’ll generally write := to make definitions. We assume a
type Prop of h-propositions and a type Set of h-sets. We generally ignore issues of size,
and don’t make universe levels explicit at any point. To define the language oneGAT
in section 1.3, we assume the existence of a specific quotient inductive-inductive type
with the expected elimination principle.

Throughout, we use a notational style similar to Agda, which we call pseudoAgda.
We write the dependent function and product types as

(G : -) → . (G) and (G : -) × . (G),

respectively, and write _G → 4 for lambda-abstraction. For multivariable functions, we
don’t distinguish between “curried” and “uncurried” functions, writing the arguments
separated by either spaces or commas as convenient. We use curly-braces to indicate
arguments are implicit; any variable appearing free is also assumed to be an implicit
argument.

We introduce dependent sums with named components using record notation: for
instance, if we wrote

pseudoAgda

record N−Alg : Set where
N : Set
z : N
s : N → N

then, for some Γ : N-Alg, we could say Γ.N, Γ.z, and Γ.s for the respective com-
ponents, or we could introduce the components with their own names by writing
(foo, bar, bat) : N-Alg to, e.g. indicate that bat : foo → foo. On the other hand, we’ll
sometimes refer to the components of a dependent sum by indices: if, say, we had some

Φ : - × . × /,

17 Chapter 0. Introduction

then we might write Φ#1 : - , Φ#2 : . , and Φ#3 : / ; we may even omit the numbered
subscripts if it’s clear from context which component of Φ is being used. We’ll name
the components with #’s in the record notation to make them anonymous, e.g. in

pseudoAgda

record Tm (Γ : Con) (A : Ty Γ) : Set where
#1 : (x : |Γ|) → |A x|
#2 : (x₀₁ : x₀ ∼Γ x₁) → A x₀₁ (#1 x₀) ∼A(x1) (#1 x₁)

We make extensive use of category-theoretic notions. Given a category C, we’ll
write |C | to indicate the type (set) of objects of C, and write C [� , �] for the set of C-
morphisms from � to � . Somewhat unusually, we will use the notation � : C ⇒ D to
indicate that � is a functor from C to D. We assume “functor extensionality”: that if
both the object- and morphism-parts of a two functors are pointwise equal, then the
functors themselves are equal. We write Set for the category of sets and Cat for the
category of categories. We only treat the latter as a 1-category.

In chapter 1, we introduce a signature language oneGAT for specifying general-
ized algebraic theories, along with a human-readable syntactic sugar nouGAT that is
supposed to compile down to oneGAT. The compiler is mostly implemented in Lean4,
though not all of the syntax used in this thesis is implemented yet.

Later on, we state a number of constructions in the syntax of directed type theory.
These are still presented using some pseudoAgda syntax (such aswhere clauses), but
this is intended as just syntactic sugar for the raw syntax presented in the text. An
implementation of this syntax in Agda using rewrite rules is in progress.

List of GATs & Structures

Sets
Set . 25
Set (oneGAT) . 57

. 219
Set (Set-algebra) . 219
Set (Initial Set-algebra) . 67

. 72
Set (category of Set-algebras) . 26

Pointed Sets
P . 26
P (oneGAT) . 58

. 219
Pointed set (P-algebra) . 219
1 (Initial P-algebra) . 65

. 67

. 72
Set• (category of P-algebras) . 26

Bipointed Sets
B . 26
B (oneGAT) . 58

. 220
B-algebra . 26

. 220
Natural Number Algebras

N . 26
N (oneGAT) . 58

. 220
Nat-algebra (N-algebra) . 22

. 220
ℕ (Initial N-algebra) . 23

. 65

. 67

. 73
NatAlg (category of N-algebras) . 27

19 List of GATs & Structures

Displayed N-algebra . 68
Even-Odd Algebras

EO . 27
EO (oneGAT) . 58

. 221
EO-algebra . 27

. 221
Monoids

Mon . 30
Mon (oneGAT) . 221
Monoid (Mon-algebra) . 221
Mon (category of Mon-algebras) . 30

Groups
Grp . 30
Grp (oneGAT) . 59

. 222
Group (Grp-algebra) . 222
Grp (category of Grp-algebras) . 30

Quivers
Quiv . 27
Quiv (oneGAT) . 59

. 222
Quiver (Quiv-algebra) . 222
Quiv (category of Quiv-algebras) . 27

ReflexiveQuivers
rQuiv . 29
rQuiv (plain nouGAT) . 28
rQuiv (oneGAT) . 59

. 223
Reflexive Quiver (rQuiv-algebra) . 223

Preorders
PreOrd . 33
PreOrd (oneGAT) . 223
Preorder (PreOrd-algebra) . 223
Monotone maps (morphism of PreOrd-algebras) 33
PreOrd (category of PreOrd-algebras) . 33

Setoids
Setoid . 33
Setoid (oneGAT) . 224
Setoid-algebra . 34

. 224
Displayed Setoid (Displayed Setoid-algebra) 75
Section of a displayed Setoid-algebra . 76

Categories
Cat . 31
Cat (oneGAT) . 225

List of GATs & Structures 20

Category (Cat-algebra) . 31
. 225

Functor (morphism of Cat-algebras) . 32
Cat (category of Cat-algebras) . 32

Groupoids
Grpd . 33
Grpd (oneGAT) . 226
Grpd-algebra . 33

. 226
Categories with Families

CwF . 37
CwF (oneGAT) . 61

. 228
CwF (CwF-algebra) . 39

. 229
CwFs /w unit type

CwF1 . 46
CwF1 (oneGAT) . 230
CwF /w unit type (CwF1-algebra) . 44

CwFs /w bool type
CwF2 . 47
CwF2 (oneGAT) . 231
CwF /w bool type (CwF2-algebra) . 44

CwFs /w Π-types
CwFΠ . 49
CwFΠ (oneGAT) . 232
CwF /w Π-types (CwFΠ-algebra) . 48

CwFs /w Σ-types
CwFΣ . 50
CwF /w Σ-types (CwFΣ-algebra) . 48

CwFs /w Extensional identity types
CwF /w Extensional identity types (CwF�=-algebra) 54

CwFs /w Intensional identity types
CwF /w Intensional identity types (CwF�=-algebra) 53

Polarized Categories with Families
PCwF . 94
PCwF (oneGAT) . 233
Polarized CwF (PCwF-algebra) . 93

. 233
Zero-ary Neutral-Polarized CwFs

N0PCwF . 112
Zero-ary NPCwF (N0PCwF-algebra) . 110

Directed CwFs
Directed CwF (DCwF-algebra) . 141

(1,1)-Directed CwFs
(1,1)-Directed CwF ((1, 1)-DCwF-algebra) 147

21 List of GATs & Structures

(0,1)-Directed CwFs
(0,1)-Directed CwF ((0, 1)-DCwF-algebra) 147

(1,0)-Directed CwFs
(1,0)-Directed CwF ((1, 0)-DCwF-algebra) 147

(0,0)-Directed CwFs
(0,0)-Directed CwF ((0, 0)-DCwF-algebra) 147

Chapter 1

TypeTheory as a Generalized
Algebraic Theory

“With reference to this freeing the elements from every other content (abstraction)
we are justified in calling numbers a free creation of the humanmind.…The relations
or laws which are derived entirely from [the natural number axioms]…form the
first object of the science of numbers or arithmetic.”

Richard Dedekind, Was sind und was sollen die Zahlen

We take inspiration for our methodology from the development of the central
construct of mathematics, the natural numbers. The mathematical community’s under-
standing of the natural numbers began to crystallize towards the end of the nineteenth
century, and it became clear that ℕ could be apprehended from two different perspec-
tives. On the one hand, the natural numbers constitute a structure: ℕ is a set equipped
with stuff, namely a chosen element I4A> and an endofunction BD22 . We can abstractly
articulate this kind of structure into the concept of a nat-algebra; in the present work,
we’ll write N-Alg for the type of nat-algebras.

pseudoAgda

record N−Alg : Set where
N : Set
z : N
s : N → N

The natural numbers can be articulated as a special nat-algebra, namely one where
the endofunction B is injective and has every = : # in its image besides I; Dedekind
[Ded63] recognized that any two such systems are canonically isomorphic, hence any
one suffices as “the” natural numbers.

23 Chapter 1. Type Theory as a Generalized Algebraic Theory

pseudoAgda

dataℕ : Set where
zero : ℕ
succ : ℕ→ℕ

Figure 1.1: pseudoAgda declaration of the type ℕ, the initial N-
algebra.

On the other hand, it was recognized that the science of natural number arithmetic
was a candidate for axiomatization, following in Euclid’s esteemed example. That is, we
can understand the natural numbers as a purely-formal symbolic calculus, governed
only by those rules which we impose. The germ of this thinking can be seen in
modern-day inductive definitions of ℕ, such as in Figure 1.1. The data keyword tells
us that ℕ is freely generated from the constructors zero and succ: there are no natural
numbers (no closed terms of typeℕ) besides those that can be obtained from well-typed
combinations of these constructors, and there are no equations that hold between natural
numbers besides those equations which logically have to hold.1 In this articulation, the
natural numbers are purely syntactic creatures: just those combinations of symbols
that constitute a well-typed term of type ℕ per the above specification.

Of course, it’s no coincidence that the definition of N-Alg and the inductive specifi-
cation of ℕ appear so similar. Indeed, we wish to view them as two different manifesta-
tions of the same underlying “idea”, the mere concept of the natural numbers. In this
view, there is some underlying concept N, and N-Alg and ℕ are the manifestations
of N as a class of structures and as a formal syntax, respectively. The well-known
link between these manifestations—that (ℕ, zero, succ) is the initial nat-algebra—is
established by a given function

recN(#, I, B) : ℕ→ #

for each (#, I, B) : N-Alg. This is yet another manifestation of the N-concept: it is not
just a function, but a homomorphism of N-algebras from (ℕ, zero, succ) to (#, I, B).
That is, it sends zero to I and must satisfy

recN(#, I, B) (succ =) = B (recN(#, I, B) =)

for all = : ℕ.
We can go further. The critical property of the natural numbers is the principle of

mathematical induction: that for any predicate on ℕ (which we’ll understand in the
proof-relevant manner, i.e. as a family of sets % : ℕ → Set), in order to to prove (i.e.
inhabit) % (=) for all = : ℕ, it suffices to supply a “base case” proving % (zero) and an

1For instance, it must be the case that zero = zero and succ(<) = succ(<) for all<, by the logical
properties of equality (which are prior to this definition); but there is no basis to conclude zero = succ(=)
for some = or that succ(<) = succ(=) for some< ≠ =, and so the “freeness” of this definition demands
that such equations not hold.

24

“inductive step” which, for any =, turns proofs of % (=) into proofs of % (succ =). In
summary, the “input data” to the inductive process can be summarized as the following.

pseudoAgda

record indData : Set where
P : ℕ→ Set
BC : P zero
IS : (n : ℕ) → P n→ P (succ n)

If we look carefully at this definition, the “N-ness” is again apparent: this is the
notion of a predicate overℕwhich respects the nat-algebra structure in the appropriate
way. And likewise with the output of induction as well: given such a (%,BC, IS), the
principle of induction gives us some dependent function

indN(%,BC, IS) : (= : ℕ) → % (=)

which also respects the N-structure:
• indN(%,BC, IS) (zero) = BC, and
• indN(%,BC, IS) (succ =) = IS(indN(%,BC, IS) =) for all =.

In what is to come, we’ll refer to (%,BC, IS) as a displayed N-algebra (over theN-algebra
(ℕ, zero, succ)) and indN(%, ?zero, ?succ) as a section of (%,BC, IS). Thus, the principle
of induction merely says that every displayed N-algebra over (ℕ, zero, succ) admits a
section.

The foregoing description (and particularly speak of abstract “concepts” “mani-
festing” as diverse mathematical constructions) may seem like we’re trying to make
ordinary, well-understood ideas like induction seem more mystical than they are. We
can remedy this, hopefully, by being precise about what kind of thing the “concept of
the natural numbers”, N, is. The answer is that it is a generalized algebraic theory: N
is a GAT. In the present chapter, we lay out the methodology we’ll call generalized
algebra—the study of structures given as GATs. We’ll set out a language for writing
down GATs and demonstrate that we can perform all the above constructions for an
arbitrary GAT G: from the mere concept of structure expressed in the GAT G, all these
notions—algebra, morphism, syntax/initial algebra, displayed algebra, section, and so
on—emanate automatically.

Generalized algebra will prove a powerful toolset for studying the semantics of type
theory. By expressing the notion of ‘model of type theory’ as a GAT, we automatically
get a theory of models and model homomorphisms (the algebras and morphisms) and,
moreover, we automatically get a syntax model which, like ℕ does for N, renders our
type theory as a purely-syntactic, symbolic calculus. This is all highly modular, of
course: whatever kind of type theory we’re interested in (e.g. directed type theory), we
just need to write its semantics down as a GAT to take advantage of all this machinery.
Moreover, generalized algebra will, like any good system of mathematical logic, start
to talk about itself : the syntax for writing down GATs is a type theory, so it can be
viewed as the initial algebra of a special GAT. More usefully for our purposes, we’ll find
that the algebras, morphisms, displayed algebras, and sections for a given GAT arrange
into a model of type theory. In this way, certain GATs G can provide semantics for a

25 Chapter 1. Type Theory as a Generalized Algebraic Theory

synthetic theory of G-algebras; one such GAT, the GAT of categories, will be the focal
point of our investigation.

1.1 Specifying Structures as GATs
“I called what alone mattered to me the conceptual content [begriflichen Inhalt].
Hence this definition must always be kept in mind if one wishes to gain a proper
understanding of what my formula language is. That, too, is what led me to the
name Begriffsschrift. Since I confined myself for the time being to expressing
relations that are independent of the particular characteristics of objects, I was
also able to use the expression ‘formula language for pure thought’.”

Gottlob Frege, Begriffsschrift, a formula language, modeled upon that of arithmetic,
for pure thought

We’ll have two syntaxes for specifying GATs. In section 1.3, we’ll introduce oneGAT,
a dependent type theory whose contexts are all the different GATs. This language is
a fragment of the signature language of Kaposi, Kovács, and Altenkirch (henceforth,
‘KKA’) [KKA19], and is ideally suited for defining concepts for all GATs (such as the
notion of a G-algebra for arbitrary G) because it is given as a quotient inductive-
inductive type. This means we can define, e.g. “G-algebra” by induction onG. However,
for anything but the simplest GATs, their presentation in oneGAT is so verbose as
to be unreadable (see e.g. the examples in Appendix A)—oneGAT functions as “GAT
machine code”: necessary to compute with, but not made for human eyes. So, we adopt
a human-readable representation, a syntactic sugar, which compiles down to oneGAT.
We call this language nouGAT. In the present section, we introduce the nouGAT
syntax by example and informally indicate how any GAT G specified in this way gives
rise to the notions of G-algebra, G-homomorphism, initial G-algebra, etc. But our
actual procedure will be to compile G’s nouGAT representation down to oneGAT
(this is done by the accompanying Lean code), and then obtain these notions using the
precisely-defined inductive definitions (taken from KKA).

In the examples that follow, we give the nouGAT definition of each GAT, written
as a snippet of Lean code. The nouGAT syntax for a GAT is a series of declarations
enclosed between {[]} brackets; we give progressively more complex examples for what
kinds of declarations are allowed. Alongside each G, we specify the corresponding
category ofG-algebras (set-based interpretations ofG) andG-algebra homomorphisms
(structure-preserving maps).

The most basic components we can specify in a GAT are sorts and elements of those
sorts. In defining the corresponding notion of “algebra”, this amounts to stipulating
sets and elements of those sets, respectively.2

Example 1.1.1 (Sets—nouGAT). [oneGAT] The GAT Set of sets is given by

2In other words, (_) -Alg is the interpretation of GATs into Set.

1.1. Specifying Structures as GATs 26

Lean—nouGAT

def Set : GAT := {[X : U]}

.
The category Set has sets as objects and functions as morphisms.

Example 1.1.2 (Pointed Sets—nouGAT). [oneGAT] The GAT P of pointed sets
is given by

Lean—nouGAT

def P : GAT := {[X : U, x : X]}

Set• is the category whose
• objects are pairs (-, G0) where - is a set and G0 : - ;
• morphisms (-, G0) → (.,~0) are functions 5 : - → . such that 5 (G0) = ~0.

Example 1.1.3 (Bipointed Sets—nouGAT). [oneGAT] The GAT B of bipointed
sets is given by

Lean—nouGAT

def B : GAT := {[X : U, x : X, x' : X]}

A B-algebra, a bipointed set, is a triple (-, G0, G1) where - is a set and G0, G1 : - .
A mprphism of bipointed sets is a function preserving both points.

Note that every GAT3 must start out with the declaration of at least one sort—we
need some starting point, some “base”, upon which to “attach” the rest of the structure.
All of these categories of algebras are therefore “concrete categories” in the usual
category-theoretic parlance, i.e. categories whose objects are structured sets and whose
morphisms are structure-preserving functions on those sets.

Given an already-declared sort T, a GAT may include further components that
depend on element(s) of T. We write and think of these as functions.

Example 1.1.4 (Natural Number Algebras—nouGAT). [oneGAT] The GAT N of
natural number algebras is given by

3Besides the empty GAT, which has a single, trivial model.

27 Chapter 1. Type Theory as a Generalized Algebraic Theory

Lean—nouGAT

def N : GAT := {[
Nat : U,
zero : Nat,
succ : Nat ⇒ Nat

]}

NatAlg is the category whose
• objects are triples (#, I, B) where # is a set, I : # , and B is a function # → # ;
• morphisms (",~, ?) → (#, I, B) are functions i : " → # such that i (~) = I
and i ◦ ? = B ◦ i .

Example 1.1.5 (Even-Odd Algebras—nouGAT). [oneGAT] The GAT EO of
even-odd algebras is given by

Lean—nouGAT

def EO : GAT := {[
Even : U,
Odd : U,
zero : Even,
succ : Even ⇒ Odd,
succ' : Odd ⇒ Even

]}

A EO-algebra consists of two sets, � and $, with a chosen element I : � and
functions

B : � → $ and B′ : $ → �.

Example 1.1.6 (Quivers—nouGAT). [oneGAT] The GAT Quiv of quivers is
given by

Lean—nouGAT

def Quiv : GAT := {[
V : U,
E : V ⇒ V ⇒ U

]}

Quiv is the category whose
• objects are quivers/directed multigraphs: a set + of “vertices” and a function �
assigning to every E0, E1 : + a set � (E0, E1) of “edges from E0 to E1”;

1.1. Specifying Structures as GATs 28

• morphisms � : (+ , �) → (+ ′, �′) consist of two components

�#1 : + → + ′

�#2 : {E0 E1 : + } → � (E0, E1) → �′(�#1 E0, �#1 E1)

The GATsN and EO feature elements depending on elements, e.g. for each element t
of the abstract type Nat, there is another element succ t, also of Nat. The GATQuiv
features a sort depending on elements: for any elements v and v' of V, we can apply
the constructor E to get a new sort symbol E v v'. As we see, function constructors
whose codomain is a prior sort symbol (like succ) are interpreted as functions on
the underlying sets, whereas sort-valued functions, i.e. function constructors whose
codomain is U are interpreted as families of sets.

Cartmell’s original definition of GATs [Car86, pp. 223–227] used a framework of
well-formed inference rules. We can view the nouGAT presentation as convenient
syntax for writing such rules, where we use ⇒ to indicate dependency instead of
the antecedent-consequent structure of an inference rule. For instance, the succ'
constructor of EO would be rendered as

o : Odd
succ' o : Even

and the E constructor of Quiv would become
v : V v' : V
E v v' : U.

We will use the rule syntax in a few places to more fully elaborate the meaning of the
nouGAT syntax, but in general we prefer the programming-language-style presentation
of nouGAT to the rule syntax. When the constructors of a GAT are listed sequentially,
as they are in nouGAT, it’s immediate to see what sort- and element-symbols are
already in-scope: just those that occur above the current line. This is more convenient
from a user’s perspective, but also is superior technically: Cartmell’s definition involves
two stages, the definition of (possibly ill-formed) pre-rules and the subsequent restric-
tion to those rules which are well-formed. The well-formedness condition essentially
amounted to requiring that the relevant symbols were in scope when used, and were
used appropriately to their type. By contrast, oneGAT(and, by extension, nouGAT)
is intrinsically well-formed : any GAT we can express will be already well-formed by
construction, and there is no need to perform a two-stage construction.

In the above examples, all the function constructors were simple, i.e. non-dependent
functions. But we also allow function constructors whose codomain depends on their
argument, such as the following.

Lean—nouGAT

def rQuiv : GAT := {[
V : U,
E : V ⇒ V ⇒ U,
r : (v : V) ⇒ E v v

]}

29 Chapter 1. Type Theory as a Generalized Algebraic Theory

The r constructor gives us an element of the sort E v v for every element v of V.
In the rule syntax,

v : V
r v : E v v.

In the algebra, this is interpreted as equipping theQuiv-algebra (+ , �) with a dependent
function A , producing for each E : + some A (E) : � (E, E). Of course, a homomorphism
of rQuiv-algebras, (�#1, �#2, �#3) : (+ , �, A) → (+ ′, �′, A ′), must commute with these
dependent functions in the appropriate way: the third component, �#3 consists of the
requirement that for all E : + , A ′(�#1 E) = �#2(A E).

Notice that rQuiv is an extension of Quiv by one additional constructor; conse-
quently, rQuiv-algebras consist of Quiv-algebras equipped with an additional piece
of data and rQuiv-algebra homomorphisms are just Quiv-algebra homomorphisms
respecting that additional data. This is a very typical situation in generalized algebra.
As our GATs get longer, it will be convenient to have syntax for denoting this. Therefore,
our “official” declaration of rQuiv will make use of the following syntactic sugar.

Example 1.1.7 (Reflexive Quivers—nouGAT). [oneGAT] The GAT of reflexive
quivers is given by

Lean—nouGAT

def rQuiv : GAT := {[
include Quiv;

r : (v : V) ⇒ E v v
]}

The include syntax means just what users of a modular programming language
are accustomed to it meaning: add all the declarations from the imported structure (in
this case, the GAT Quiv) in order, so they’re in scope for subsequent declarations.

It’s important to point out what we’re not allowed to write in a GAT. The most
significant restriction is that the domain of any⇒ must be a previously-declared sort.
We cannot have ‘sort combinators’ (e.g. constructors of shape U ⇒ U) or ‘choice
functions’ (e.g. constructors of shape (N : U) ⇒ N, as U is not itself a sort; we cannot
have higher-order functions, e.g. (A⇒ B) ⇒ C, because A⇒ B is not a sort, even if
A and B are. In other words,⇒ functions must have “small” domain (a sort), but can
have either small or “large” codomain. This restriction against higher-order functions
is relaxed somewhat in the notion of second-order GAT (SOGAT) [Uem21], allowing
for second-order functions (but not arbitrary higher-order), at the expense of a more
complex model theory. For the key properties of GATs—especially the existence of
initial algebras—to work as desired, we are obliged to obey these restrictions.

The final aspect of GATs to introduce are equations. GATs are, after all, intended
to be algebraic theories, and a necessary aspect of defining algebraic structures is
stipulating the laws which those structures must obey. Accordingly, GATs allow for
constructors which equate elements of previously-defined sorts. Note that we do not
permit equations between the sorts themselves (nor will we need to for the structures
we wish to study); our notion of ‘GAT’ is therefore slightly stricter than that of Cartmell,

1.1. Specifying Structures as GATs 30

who does allow for sort equations.

Example 1.1.8. [oneGAT] The GAT Mon of monoids is given by

Lean—nouGAT

def Mon : GAT := {[
M : U,
u : M,
m : M ⇒ M ⇒ M,
lunit : (x : M) ⇒ m u x ≡ x,
runit : (x : M) ⇒ m x u ≡ x,
assoc : (x y z : M) ⇒ m x (m y z) ≡ m (m x y) z

]}

Mon is the category whose
• objects are monoids: a set " equipped with an element D : " and function
` : " → " → " satisfying the following equations for all G,~, I : " :

– ` (D, G) = G
– ` (G,D) = G
– ` (G, ` (~, I)) = ` (` (G,~), I).

• morphisms (monoid homomorphisms) (",D, `) → (#, E, a) are functions
i : " → # such that i (D) = E and such that i (` (G,~)) = a (i G, i ~) for
all G,~ : " .

Example 1.1.9 (Groups—nouGAT). [oneGAT] The GAT Grp of groups is given
by

Lean—nouGAT

def Grp : GAT := {[
include Mon;

inv : M ⇒ M,
linv : (x : M) ⇒ m (inv x) x ≡ u,
rinv : (x : M) ⇒ m x (inv x) ≡ u

]}

Grp is the category whose
• objects are groups: a monoid (",D, `) equipped with an operation 8 : " → "

satisfying the following equations for all G : " :
– ` (8 G, G) = D
– ` (G, 8 G) = D

• morphisms (group homomorphisms) (",D, `, 8) → (#, E, a, 9) are monoid ho-
momorphisms i : (",D, `) → (#, E, a) such that

i (8 G) = 9 (i G)

31 Chapter 1. Type Theory as a Generalized Algebraic Theory

for all G : " .

Remark 1.1.10. Some of the requirements of ‘group homomorphism’ stated above are
superfluous: as any text on basic group theory will remind us, the requirement that
i (` (G,~)) = a (i G, i ~) will, when combined with the other laws of groups, prove
that i preserves the unit element and commutes with the inverse operations. One
consequence of these facts is that Grp is a full subcategory of Mon—every monoid
homomorphism between two groups is already a group homomorphism. When
defining structures in the informal mathematical style, we will frequently follow the
standard practice and omit such superfluous conditions. Note we have already omitted
from the definition of ‘homomorphism’ the requirement that i preserve the proofs of
the left- and right-unit laws, the proof of the associative law, etc.a This is because
we are assuming the uniqueness of identity proofs (and function extensionality) in
our metatheory, hence the proofs are unique anyways and preservation is automatic.
A treatment of this topic that takes, say, homotopy type theory as its metatheory
would need to carefully attend to this matter, but our assumption of UIP permits us
to ignore it.

aFor instance: the action of i on the equation lunit" (<) between ` (D,<) and < gives us an
equation in # between i (` (D,<)) and i (<). But we can also obtain an equation of this form from
the equation lunit# (i (<)) : a (E, i (<)) = i (<), composed with the proof of i (` (D,<)) = a (E, i (<))
obtained from the proofs that i (D) = D and i (` (G,~)) = a (i G, i ~). These ought to be the same.

We can also now introduce the GAT which will be our central focus in subsequent
chapters: the GAT of categories. In this GAT (and henceforth), we enclose arguments
in curly-braces to mark them as implicit : note that applications of comp, for example,
only the two arguments are given (the Mor J K and Mor I J arguments), with the
first three arguments (the I, J, and K) left to be inferred. Later, this will prevent the
GAT signatures from getting intolerably unwieldy.

Example 1.1.11. The GAT Cat of categories is given by

Lean—nouGAT

def Cat : GAT := {[
include rQuiv as (Obj,Hom,id);

comp : {I J K : Obj} ⇒
Hom J K ⇒ Hom I J ⇒ Hom I K,

lunit : {I J : Obj} ⇒ (j : Hom I J) ⇒
comp (id J) j ≡ j,

runit : {I J : Obj} ⇒ (j : Hom I J) ⇒
comp j (id I) ≡ j,

assoc : {I J K L : Obj} ⇒ (j : Hom I J) ⇒
(k : Hom J K) ⇒ (ℓ : Hom K L) ⇒
comp ℓ (comp k j) ≡ comp (comp ℓ k) j

]}

1.1. Specifying Structures as GATs 32

The type Cat-Alg is given in Figure 1.2: a category C consists of
• a set |C | of “objects”;
• for any objects � , � : |C |, a set C [� , �] of “morphisms from � to � ”;
• a given identity morphism id� : C [� , �] for each object � ; and
• a composition operator

_ ◦ _ : C [� ,] → C [� , �] → C [� ,]

for all objects � , � , such that
– 5 ◦ id� = 5 and id� ◦ 5 = 5 for all 5 : C [� , �],
– ℎ ◦ (6 ◦ 5) = (ℎ ◦ 6) ◦ 5 for all appropriate 5 , 6, ℎ.

The as notation allows us to rename components, in this case renaming the sort V
to Obj, E to Hom, and r to id.

pseudoAgda

record Cat−Alg : Set where
Obj : Set
Hom : Obj → Obj → Set
id : (I : Obj) → Hom I I
comp : {I J K : Obj} → Hom J K→ Hom I J → Hom I K
idr : {I J : Obj} → (j : Hom I J) → comp (id J) j = j
idl : {I J : Obj} → (j : Hom I J) → comp j (id I) = j
ass : {I J K L : Obj} → (j : Hom I J) → (k : Hom J K) → (ℓ : Hom K L)
→
comp ℓ (comp k j) = comp (comp ℓ k) j

Figure 1.2: pseudoAgda definition of the type Cat-Alg.

Example 1.1.12. The morphisms of the category Cat from C to D are functors,
which consist of two components

�#1 : |C | → |D |
�#2 : {� � : |C |} → C [� , �] → D [�#1 � , �#1 �]

such that
• �#2(id�) = id�#1 � for all � ; and
• �#2(: ◦ 9) = (�#2 :) ◦ (�#2 9) for all :, 9 .

Analogously to the case of monoids and groups, we have a notion of ‘category
equipped with inverse operations’—the GAT of groupoids—whose category of algebras
is a full subcategory of Cat.

33 Chapter 1. Type Theory as a Generalized Algebraic Theory

Example 1.1.13. The GAT Grpd of groupoids is given by

Lean—nouGAT

def Grpd : GAT := {[
include Cat;

inv : {I J : Obj} ⇒ Hom I J ⇒ Hom J I,
linv : {I J : Obj} ⇒ (j : Hom I J) ⇒

comp (inv j) j ≡ id I,
rinv : {I J : Obj} ⇒ (j : Hom I J) ⇒

comp j (inv j) ≡ id J
]}

A Grpd-algebra, i.e. a groupoid, is a category C equipped with an operation
(_)−1 : C [� , �] → C [� , �] satisfying the following equations for all 9 : C [� , �]:

• 9−1 ◦ 9 = id�
• 9 ◦ 9−1 = id� .

Our other major use of equations in a GAT will be to truncate a sort, i.e. stipulate
that all elements of that sort are equal. This allows us to use the sort as a proposition, as
in the following examples.

Example 1.1.14. The GAT PreOrd of preorders is given by

Lean—nouGAT

def PreOrd : GAT := {[
include rQuiv as (X,leq,_);

leq[: {x x' : X} ⇒ {p q : leq x x'} ⇒ p ≡ q,
trns : {x y z : X} ⇒

leq x y ⇒ leq y z ⇒ leq x z
]}

PreOrd is the category whose
• objects are preorders: a set - equipped with an binary relation _ ≤ _ : - →
- → Prop such that, for all G,~, I : - ,

– G ≤ G
– if G ≤ ~ and ~ ≤ I, then G ≤ I;

• morphisms (monotone maps) (-, ≤-) → (., ≤.) are functions 5 : - → . such
that G ≤- G′ implies 5 (G) ≤- 5 (G′) for all G, G′.

Example 1.1.15. The GAT Setoid of setoids is given by

1.1. Specifying Structures as GATs 34

Lean—nouGAT

def Setoid : GAT := {[
include PreOrd as (X,eq);

sym : {x y : X} ⇒ eq x y ⇒ eq y x
]}

A Setoid-algebra, i.e. a setoid, is a preorder (-,∼) such that, for all G,~,

G ∼ ~ implies ~ ∼ G .

Let us also brieflymention that the equalities in these GAT signatures come equipped
with a transport operation, allowing us to express equalities over previous equalities.
The examples in this section are too simple for this to be relevant, but in the next section
we will need to do this for our GAT signatures to be well-formed. We’ll denote this as
in the following toy example.

A : U
a₀ : A
a₁ : A
eq : a₀ ≡ a₁
B : A ⇒ U
b : (a : A) ⇒ B a
beq : (b a₀ #〈 eq 〉) ≡ b a₁

In this example, we want to assert an equality between b a0 and b a1. However, this is
ill-typed because they are elements of different sorts, B a0 and B a1 respectively. Thus,
we have to transport b a0 along the equality eq in order for it to be an element of the
sort B a1. As we’ll discuss later (and is addressed in [KKA19, p. 12]), this transport
operation is imported from the metatheory, since the equality types of oneGAT are
extensional. Therefore, when interpreting these signatures into Set, i.e. defining the
notion of ‘algebra’, the ≡ equalities become metatheoretic equalities. Thus there is no
need to make the transports explicit in the definition of algebra: the type of algebras
for the signature above would be

(� : Set) × (00 01 : �)
× (00 = 01)
× (� : �→ Set)
× (1 : (0 : �) → �(0))
× 1 (00) = 1 (01)

so, since 00 = 01, the last equation is well-formed already.
A basic fact about GATs is that they are finitary: each of the above nouGAT

declarations must necessarily consist of only finitely-many components. The syntax
above doesn’t allow us to declare component schemes, i.e. families of components
indexed by, say, (metatheoretic) natural numbers. It turns out that there’s no essential
obstacle to doing so: the difference between our GAT signature language oneGATand

35 Chapter 1. Type Theory as a Generalized Algebraic Theory

the KKA signature language for QIITs (of which it is a fragment), is that the latter does
permit (dependent) functions with metatheoretic domain, i.e. families of components
indexed by sets in the metatheory (and identities among elements of those sets). The
other constructions possible on GATs, in particular the construction of the initial algebra,
can be made just as well for signatures of this form as for GATs. For instance, assuming
the natural numbers ℕ with their usual addition operator _ + _, KKA give the usual
definition of the setℤ of integers as a quotient ofℕ×ℕ [KKA19, pp. 4–5], which might
be rendered in nouGAT-like syntax as follows.

Lean—nouGAT

def Z : iGAT [ℕ] := {[
Int : U,
subtract : ℕ ⇒̂ ℕ ⇒̂ Int,
eq : (a b c d : ℕ) ⇒̂ (a + d = b + c) ⇒̂

Eq (subtract a b) (subtract c d)
]}

The initial algebra for this signature is, of course, the set ℤ of integers, with the
subtract function being the subtraction operation ℕ→ ℕ→ ℤ. The name iGAT
here is short for “indexed GAT” (or perhaps “infinitary GAT”), but is the same thing as
a quotient inductive-inductive type signature. The ⇒̂ arrows are not the same as the⇒
arrows from before: these have ℕ and (metatheoretic) equalities of natural numbers as
their domain, rather than a previously-declared sort. Quoting KKA (Ibid. p. 4), “An
⇒ function has small domain and large codomain, while ⇒̂ has metatheoretic domain
and large codomain.” For the most part, finitary GATs will suffice for our purposes,
and so for the rest of this chapter we’ll just concern ourselves with them. But we will
technically need the full power of iGATs/QIIT signatures in section 2.3; we therefore
refer the reader to KKA for the appropriate definitions.

We conclude this section with a brief consideration of initial algebras. The natural
numbers, i.e. the initial N-algebra, are once again an instructive example. While an
arbitrary N-algebra might contain all kinds of junk, we want the natural numbers to
only consist of I4A> , BD22 (I4A>), BD22 (BD22 (I4A>)), and so on. To put it differently: we
want the set ℕ of natural numbers to consist of only those elements whose existence
can be deduced purely from the concept N. We’ll make this more precise in the following
way. Think of the signature N as a context of a type-theoretic language; what terms-in-
context C of the form

{[Nat : U, zero : Nat, succ : Nat ⇒ Nat]} ` t : Nat

are we able to write? This turns out to be exactly the natural numbers: Nat is a
completely abstract4 type; we don’t “know” anything about it except that it comes
equipped with zero and succ. Therefore the only such terms-in-context are zero,
succ(zero), etc. This is exactly the intended meaning behind the data keyword in
Figure 1.1: the type is freely generated by the constructors, containing neither junk

4In precisely the sense of [Rey83].

1.2. The Semantics of Type Theory as a GAT 36

(elements besides those constructible from zero and succ) nor noise (relations among
the elements besides those which can be deduced from the definition). From here,
the initiality is more-or-less straightforward: if everything in ℕ follows from the N
concept, then naturally they must have an interpretation in any implementation of the
N concept, that is, in any N-algebra.

Though we’ll need to wait until we define the oneGAT signature language in
section 1.3 to make precise what “terms-in-context” are, this provides the template for
how we’ll construct initial algebras for an arbitrary GAT G: the set interpreting a sort
T (such as Nat) will be the terms-in-context

G ` t : T

and the elements (like zero) will be interpreted as themselves (N ` zero : Nat). As
an illustrative example, let’s consider monoids. There is certainly at least one element
of the initial monoid, 1, since the signature stipulates the identity element u:

Mon ` u : M.

But, upon further reflection, this is all: though the operation m : M ⇒ M ⇒ M might
seem like it could produce new elements of 1 like succ does for ℕ, the only place
we can start is by considering m u u, which the equations stipulate gives us back u
again. Once again, since the carrier type M is abstract, we don’t have any other means
of producing terms of type M besides what’s in the signature, and u is apparently the
only such term. At this stage, we’re just considering things informally, but once we
precisely define oneGAT, the construction of initial algebras, and state the appropriate
principle of induction/unary parametricity, then we will be able to prove rigorously
that 1 is indeed a singleton set.

1.2 The Semantics of Type Theory as a GAT
As discussed, we are especially interested in the construction of initial algebras for an
arbitrary GAT because it means that any notion of ‘model of type theory’ which we can
express as a GAT will then automatically admit an initial model, the syntax model. We
therefore introduce our GAT notion of model of type theory: categories with families.
As is well-known in the literature [ALN25], the same data that constitutes a CwF can be
packaged in myriad forms, allowing one to study the semantics of type theory within
a preferred mathematical framework. For instance, a pure category theorist might
find the notion of split comprehension category an attractive presentation, as it defines
‘model of type theory’ in terms of Grothendieck fibrations and cartesian morphisms;
an algebraic geometer (specifically someone well-versed in the theory of stacks) might
instead prefer to work with natural models [Awo18]; and so on. Part of what sets CwFs5
apart, we claim, is that they provide the most elementary presentation of this common
data: though we make use of some small amount of category theory terminology
in Example 1.2.2, CwFs are, for us, ultimately the algebras of a GAT CwF. As we
saw in the previous section, algebras for GATs are defined in the most rudimentary

5At least as presented here.

37 Chapter 1. Type Theory as a Generalized Algebraic Theory

terms: sets, elements of sets, and functions on those sets. The presentation of CwF-Alg
given in Figure 1.3 provides us with the same notion of ‘model of type theory’ as
split comprehension categories, natural models, and so on, but fully “unboxed”, all
the “packaging” removed, nothing but the actual content. Undoubtedly, the models
of directed type theory pursued in subsequent chapters (and expressed as extensions
of CwF) could be packaged up more conveniently to fit this or that mathematical
framework. We leave such considerations to future work: here, we aspire to present
the bare heart of the matter in full explicit detail, that is, as a GAT.

1.2.1 Categories with Families
The notion of CwF mathematically captures the fundamental structural dynamics of
dependent type theory. In type theory, we are concerned with forming terms, each of
which must have a specified type. We do so with the help of typed variable declarations
available from the context, and we can transport the terms and types between contexts
by way of substitutions. These are the four kinds of “stuff” in type theory, and will be
the four sort components of the GAT of CwFs—the rest of the components are there to
abstractly characterize how these interact.

In the syntax of type theory, our contexts are finite lists of typed variable declarations,
i.e. lists of the form

G1 : �1, G2 : �2, . . . , G= : �=

where the type �2 could possibly contain the variable G1, the type �3 could possibly
contain the variables G1 and G2, and so on. A substitution from Δ = (~1 : �1, . . . , ~< : �<)
to Γ = (G1 : �1, . . . , G= : �=) is an “implementation” of the variables of Γ using the
variables of Δ, that is, a finite list of terms (C1, . . . , C=), each of which may contain the
variables ~1, . . . , ~< and where

• C1 : �1,
• C2 : �2 [C1/G1] (i.e. the type �2 with any occurrences of G1 replaced by C1)
• C3 : �3 [C1/G1, C2/G2]

and so on. Now, to make this precise would bring in a lot of cumbersome details,
such as the concern that the variable names G8 are all distinct. We want our model
notion to abstract away from the syntactic minutiae of variable names, capture, scope,
U-equivalence and so on. This is what is accomplished in the notion of CwF: abstractly
characterizing the fact that contexts and substitutions are built up inductively as struc-
tured lists, and that the variables contained in a context can be used to construct terms
and types in that context.

Example 1.2.1. The GAT of categories with families is given by

1.2. The Semantics of Type Theory as a GAT 38

Lean—nouGAT

def CwF : GAT := {[
include Cat as (Con,Sub,comp,id,_,_,_);

empty : Con,
n : (Γ : Con) ⇒ Sub Γ empty,
n_[: (Γ : Con) ⇒ (f : Sub Γ empty) ⇒

f ≡ (n Γ),
Ty : Con ⇒ U,
substTy : {∆ Γ : Con} ⇒ Sub ∆ Γ ⇒ Ty Γ ⇒ Ty ∆,
idTy : {Γ : Con} ⇒ (A : Ty Γ) ⇒

substTy (id Γ) A ≡ A,
compTy : {Θ ∆ Γ : Con} ⇒ (A : Ty Γ)

(X : Sub Θ ∆) ⇒ (W : Sub ∆ Γ) ⇒
substTy W (substTy X A)
≡ substTy (comp W X) A,

Tm : (Γ : Con) ⇒ Ty Γ ⇒ U,
substTm : {∆ Γ : Con} ⇒ {A : Ty Γ} ⇒

(W : Sub ∆ Γ) ⇒
Tm Γ A ⇒ Tm ∆ (substTy W A),

idTm : {Γ : Con} ⇒ {A : Ty Γ} ⇒ (t : Tm Γ A)
substTm (id Γ) t #〈idTy A〉
≡ t,

compTm : {Θ ∆ Γ : Con} ⇒
{A : Ty Γ} ⇒ (t : Tm Γ A) ⇒
(X : Sub Θ ∆) ⇒ (W : Sub ∆ Γ) ⇒
substTm W (substTm X t)

#〈compTy A W X〉
≡ substTm (comp W X) t,

39 Chapter 1. Type Theory as a Generalized Algebraic Theory

Lean—nouGAT

ext : (Γ : Con) ⇒ Ty Γ ⇒ Con,
pair : {∆ Γ : Con} ⇒ {A : Ty Γ} ⇒

(W : Sub ∆ Γ) ⇒
Tm ∆ (substTy W A) ⇒
Sub ∆ (ext Γ A),

pair_nat: {Θ ∆ Γ : Con} ⇒ {A : Ty Γ} ⇒
(W : Sub ∆ Γ) ⇒
(t : Tm ∆ (substTy W A)) ⇒
(X : Sub Θ ∆) ⇒
comp (pair W t) X

≡ pair (comp W X)
(substTm X t #〈compTy A W X〉),

p : {Γ : Con} ⇒ (A : Ty Γ) ⇒
Sub (ext Γ A) Γ

v : {Γ : Con} ⇒ (A : Ty Γ) ⇒
Tm (ext Γ A) (substTy (p A) A),

ext_V₁ : (∆ Γ : Con) ⇒ (A : Ty Γ) ⇒
(W : Sub ∆ Γ) ⇒
(t : Tm ∆ (substTy W A)) ⇒
comp (p A) (pair W t) ≡ W,

ext_V₂ : (∆ Γ : Con) ⇒ (A : Ty Γ) ⇒
(W : Sub ∆ Γ) ⇒
(t : Tm ∆ (substTy W A)) ⇒
substTm (pair W t) (v A)

#〈compTy A (p A) (pair W t)〉
#〈ext_V₁ W t〉

≡ t,
ext_[: (Γ : Con) ⇒ (A : Ty Γ) ⇒

pair (p A) (v A)
≡ id (ext Γ A)

]}

Example 1.2.2. The type of categories with families (CwFs)—the algebras for
CwF—consists of the following data (spelled out more explicitly in Figure 1.3).

• A category whose objects are called contexts Δ, Γ : Con and whose morphisms
are called substitutions f : Sub Δ Γ;

• A terminal object • : Con, the empty context;
• A set Ty Γ of types for each context Γ, equipped with an operation

(� : Ty Γ), (f : Sub Δ Γ) ↦→ �[f] : Ty Δ

such that �[idΓ] = � and �[W] [X] = �[W ◦ X];
• A set Tm(Γ, �) of terms for each Γ : Con and � : Ty Γ, equipped with an

1.2. The Semantics of Type Theory as a GAT 40

operation

(C : Tm(Γ, �)), (f : Sub Δ Γ) ↦→ C [f] : Tm(Δ, �[f])

such that C [idΓ] = C and C [W] [X] = C [W ◦ X];
• An operation of context extension

(Γ : Con), (� : Ty Γ) ↦→ Γ B � : Con

equipped with the weakening substitution and variable term

p� : Sub (Γ B �) Γ and v� : Tm(Γ B �,�[p�])

and pairing operation

(f : Sub Δ Γ), (C : Tm(Δ, �[f])) ↦→ (f, C) : Sub Δ Γ B �

satisfying the laws

p ◦ (f, C) = f
v [f, C] = C
(f, C) ◦ X = (f ◦ X, C [X])
(p, v) = id.

As here, we’ll just write p and v when the type can be inferred.

We’ll sometimes depict the substitution operation like this:

C [f] : �[f] Δ

C : � Γ

f

CwFs, in our view, sit in the “Goldilocks zone” of abstraction: they are far enough
abstracted from the syntax to free us from its cumbersome bureaucracy, but not so
abstract that the connection to syntax is obscured. With other, more mathematically-
oriented notions of “model”, the terms and types are cleverly encoded as part of the
mathematical structure; often considerable work is needed to recognize the contours of
type theory within that structure. We delight in not being clever: the types in context
Γ are the elements of the set Ty Γ, and the terms in Γ of type � are elements of the set
Tm(Γ, �).

Let us make some comments on the components of a CwF, starting with the substi-
tution p. Thinking again of contexts as lists of variable declarations, we understand this
substitution as simply ‘forgetting’ the last variable in the context ΓB�, but leaving the
remainder of the variables in Γ untouched. This is exemplified by the following tactic,
of which we will make frequent use.

41 Chapter 1. Type Theory as a Generalized Algebraic Theory

pseudoAgda

record CwF−Alg where
Con : Set
Sub : Con → Con→ Set
id : (X : Con) → Sub X X
comp : {X Y Z : Con} → Sub Y Z→ Sub X Y→ Sub X Z
lunit : {X Y : Con} → (f : Sub X Y) → comp (id Y) f = f
runit : {X Y : Con} → (f : Sub X Y) → comp f (id X) = f
assoc : {W X Y Z : Con} →

(e : Sub W X) → (f : Sub X Y) → (g : Sub Y Z) →
comp g (comp f e) = comp (comp g f) e

empty : Con
n : (Γ : Con) → Sub Γ empty
[n : {Γ : Con} → (f : Sub Γ empty) → f = n Γ
Ty : Con → Set
substTy : {∆ Γ : Con} → Sub ∆ Γ →Ty Γ→Ty ∆
idTy : {Γ : Con} → (A : Ty Γ) → substTy (id Γ) A = A
compTy : {Θ ∆ Γ : Con} → (A : Ty Γ) →

(X : Sub Θ ∆) → (W : Sub ∆ Γ) →
substTy W (substTy X A) = substTy (comp W X) A

Tm : (Γ : Con) → Ty Γ→ Set
substTm : {∆ Γ : Con}{A : Ty Γ} →

(W : Sub ∆ Γ) → Tm Γ A→ Tm ∆ (substTy W A)
idTm : {Γ : Con}{A : Ty Γ} → (t : Tm Γ A) → substTm (id Γ) t = t
compTm : {Θ ∆ Γ : Con}{A : Ty Γ} → (t : Tm Γ A) →

(X : Sub Θ ∆) → (W : Sub ∆ Γ) →
substTm W (substTm X t) = substTm (comp W X) t

ext : (Γ : Con) → Ty Γ →Con
pair : {∆ Γ : Con}{A : Ty Γ} →

(W : Sub ∆ Γ) → Tm ∆ (substTy W A) → Sub ∆ (ext Γ A)
pair_nat : {Θ ∆ Γ : Con}{A : Ty Γ} →

(W : Sub ∆ Γ) → (t : Tm ∆ (substTy W A)) → (X : Sub Θ ∆) →
comp (pair W t) X = pair (comp W X) (substTm X t)

p : {Γ : Con} → (A : Ty Γ) → Sub (ext Γ A) Γ
v : {Γ : Con} → (A : Ty Γ) → Tm (ext Γ A) (substTy (p A) A)
ext_V₁ : {∆ Γ : Con}{A : Ty Γ} →

(W : Sub ∆ Γ) → (t : Tm ∆ (substTy W A)) →
comp (p A) (pair W t) = W

ext_V₂ : {∆ Γ : Con}{A : Ty Γ} →
(W : Sub ∆ Γ) → (t : Tm ∆ (substTy W A)) →
substTm (pair W t) (v A) = t

ext_[: {Γ : Con}{A : Ty Γ} → pair (p A) (v A) = id (ext Γ A)

Figure 1.3: pseudoAgda presentation of CwF-Alg.

1.2. The Semantics of Type Theory as a GAT 42

Lemma 1.2.3. There is a bijection between terms in Γ of type � and sections of p�:

Tm(Γ, �) (g : Sub Γ (Γ B �)) × p ◦ g = idΓ .
(idΓ, _)

v [_]

In the abstract presentation, there is no ontological distinction between variables and
terms: variables are just particular terms, the ones obtained directly from the context
rather than constructed by way of term-formers. The variable terms do not have
explicit names which can be shadowed, captured, fresh, etc., but are rather abstractly
represented as de Bruijn indices.

Definition 1.2.4. For a given CwF, define the de Bruijn indices as terms v= for
= : ℕ by:

v0 {Γ}{�0} : Tm(Γ B �0, �0 [p])
v0 {Γ}{�0} := v�0

v=+1{Γ}{�0 . . . �=+1} : Tm(Γ B �0 B · · ·B �=+1, �0 [p ◦ · · · ◦ p])
v=+1{Γ}{�0 . . . �=+1} := (v= {Γ} {�0 . . . �=}) [p�=+1]

In order for ΓB�0B · · ·B�=+1 to be well-formed, the list of types�0 . . . �=+1 must
be of a particular form:

�0 : Ty Γ

�1 : Ty (Γ B �0)
...

�=+1 : Ty (Γ B �0 B · · ·B �=).

A list of this form is what we’ll often refer to as a telescope over Γ.

This notion of ‘telescope’ allows us to more conveniently state the following notion,
which will be useful at various points of our development. It captures the idea of a
substitution between Δ B · · · and Γ B · · · which only substitutes terms in Δ for the
variables in Γ, and leaves further variables otherwise unchanged.

Definition 1.2.5. Suppose f : Sub Δ Γ is some substitution and �0 . . . �= is some
telescope over Γ. Then we define the substitution

q(f;�0, . . . , �=) : Sub (ΔB �0 [f] B · · ·B �= [q(f;�0, . . . , �=−1)])
(Γ B �0 B · · ·B �=).

Informally, we define q(f;�0, . . . , �=) by

((f ◦ p ◦ · · · ◦ p︸ ︷︷ ︸
=+1

), v=, . . . , v0).

43 Chapter 1. Type Theory as a Generalized Algebraic Theory

But, more precisely, by induction on =: for = = 0, put

q(f;�0) := (f ◦ p, v�0 [f]) : Sub (ΔB �0 [f]) (Γ B �0).

Then, given q(f;�0, . . . , �=), define

q(f;�0, . . . , �=+1) := (q(f;�0, . . . , �=) ◦ p, v�=+1 [q (f;�0,...,�=)]).

When the telescope �0 . . . �= is clear from context, we may just write q(f).

We’ll encounter our main examples of CwFs—concrete CwFs, fibrant sub-CwFs of
concrete CwFs, and syntax models—later in this chapter. But, for the sake of having
a fruitful example at the present moment, we’ll introduce one of the most important
varieties of CwF: presheaf models of type theory [Hof97, Sect. 4]. To do so, we first recall
the following definition.

Definition 1.2.6. Given a category C and a presheaf � : Cop ⇒ Set, define the
category of elements of �—denoted ∫ �—as follows.

|∫ � | := (� : |C |) × � �
(∫ �) [(� , G), (� ,~)] := (9 : C [� , �]) × (� 9 ~ = G)

Example 1.2.7. For any category C, we have the presheaf model (on C), which is
the CwF whose

• contexts are presheaves Γ : Cop ⇒ Set, with the empty context being the
constant {★} presheaf;

• substitutions f : Sub Δ Γ are natural transformations Δ→ Γ;
• types � : Ty Γ are presheaves on the category of elements of Γ, i.e.
� : (∫ Γ)op ⇒ Set, with �[f] defined by �[f] (� , X) := �(� , f� X);

• terms C : Tm(Γ, �) are operations assigning to each � : |C | and W : Γ(�) an ele-
ment of the set �(� , W), in such a way that

� 8 (C (� , W)) = C (� , Γ 8 W)

for every 8 : C [� , �];
• extended context ΓB� is the presheaf sending � : |C | to the set (W : Γ �)×�(� , W).

As we’ll see throughout this section, presheaf CwFs automatically come equipped
with several important type-theoretic constructs, even when the “base category” C is
completely arbitrary. But many of the most fruitful uses of presheaf models in the
literature assume further structure on C, and import that structure into the type theory
the presheaf model interprets. One prominent example is the presheaf semantics of
cubical type theory given in [BCH14][CCHM18, Sect. 8], which adds a special interval
pre-type to type theory, justified by presheaf models on “cube categories”.

1.2. The Semantics of Type Theory as a GAT 44

1.2.2 Type Formers
The definition of ‘CwF’ characterizes the pure structure of type theory—contexts, types,
terms, substitution, etc.—but none of the content. Indeed, the syntax model of this type
theory, i.e. the initial CwF-algebra, is trivial: it consists of only the empty context •,
and there are no types, Ty • = ∅. This is because there’s nothing in the GAT CwF
that actually allows us to produce types and terms; in order to have types and terms
in our theory (and thereby have nontrivial syntax models), we must extend CwF with
type and term-formers. We don’t undertake a detailed study of different type-theoretic
constructs, but we rehearse a few canonical examples here for the sake of making our
theory clear (and for useful contrast later on, when we develop similar types in directed
type theory).

The simplest variety of type-formers are finite types, where we stipulate a type along
with all of its terms. For instance, the two-element type, i.e. the type of booleans, is a
feature in virtually every programming language, and has been put to use in countless
ways. We develop the singleton unit type and the type of booleans in the present
framework, for the sake of demonstration.

Definition 1.2.8. A CwF supports the unit type if it is equipped with the following
data.

pseudoAgda

unit : {Γ : Con} → Ty Γ
unit[] : {∆}{Γ}(f : Sub ∆ Γ) → unit [f] = unit
star : {Γ : Con} → Tm(Γ, unit)
star[] : {∆}{Γ}(f : Sub ∆ Γ) → star [f] = star
unit−elim : {Γ}{M : Ty (Γ ⊲ unit)} →

Tm(Γ, M [id , star]) → Tm(Γ ⊲ unit, M)
unitV : {Γ}{M}(m : Tm(Γ, M [id , star])) →

(unit−elim m)[id , star] = m
unit[: {Γ}{M}(m : Tm(Γ, M [id , star])) →

(z : Tm(Γ ⊲ unit, M)) → (z [id , star] = m) →
z = unit−elim m

unit−elim[] : {∆}{Γ}{A}{B}{M} →
(m : Tm(Γ, M[id , star])) → (f : Sub ∆ Γ) →
(unit−elim m)[q(f ;unit)] = unit−elim {Γ=∆} (m [f])

Definition 1.2.9. A CwF supports the bool type if it is equipped with the following
data.

45 Chapter 1. Type Theory as a Generalized Algebraic Theory

pseudoAgda

bool : {Γ : Con} → Ty Γ
bool[] : {∆}{Γ}(f : Sub ∆ Γ) → bool [f] = bool
tt : {Γ : Con} → Tm(Γ, bool)
tt[] : {∆}{Γ}(f : Sub ∆ Γ) → tt [f] = tt
ff : {Γ : Con} → Tm(Γ, bool)
ff[] : {∆}{Γ}(f : Sub ∆ Γ) → ff [f] = ff
bool−elim : {Γ}{M : Ty (Γ ⊲ bool)} →

Tm(Γ, M [id , tt]) → Tm(Γ, M [id , ff]) →
Tm(Γ ⊲ bool, M)

boolVtt : {Γ}{M} →
(mtt : Tm(Γ, M [id , tt])) → (mff : Tm(Γ, M [id , ff])) →
(bool−elim mtt mff)[id , tt] = mtt

boolVff : {Γ}{M} →
(mtt : Tm(Γ, M [id , tt])) → (mff : Tm(Γ, M [id , ff])) →
(bool−elim mtt mff)[id , ff] = mff

bool[: {Γ}{M} →
(mtt : Tm(Γ, M [id , tt])) → (mff : Tm(Γ, M [id , ff])) →
(z : Tm(Γ ⊲ bool, M)) →
(z [id , tt] = mtt) → (z [id , ff] = mff) →
z = bool−elim mtt mff

bool−elim[] : {∆}{Γ}{A}{B}{M} →
(mtt : Tm(Γ, M [id , tt])) → (mff : Tm(Γ, M [id , ff])) →
(f : Sub ∆ Γ) →
(bool−elim mtt mff)[q(f ;bool)]
= bool−elim {Γ=∆} (mtt [f]) (mff [f])

Remark 1.2.10. In the GAT signatures for CwF1 and CwF2 (Figure 1.4,Figure 1.5),
we have omitted the unit−elim[] and bool−elim[] components, respectively. This
is for reasons of simplicity: in order to get these equations to type-check, we need
to perform a complex series of transports (using the prior equations unit_stab
and star_stab, plus various properties of equality). As mentioned above, the ≡
equalities in the GAT get interpreted as metatheoretic equality of elements, so we
can make these transports implicit in Definition 1.2.8 and Definition 1.2.9.

Example 1.2.11. The presheaf model (on any category C) supports both unit and
bool types: for any context Γ : Cop ⇒ Set, define unit : (∫ Γ)op ⇒ Set to be the
constant-{★} presheaf. This is clearly stable under substitution by some natural
transformation f : Sub Δ Γ, and comes equipped with a term star defined by

star (� : |C |) (W : Γ �) := ★: star(� , W).

This is, of course, the only such term; the natural transformation (id, star) : Sub Γ ΓB

1.2. The Semantics of Type Theory as a GAT 46

Lean—nouGAT

def CwF₁ : GAT := {[
include CwF;

unit : {Γ : Con} ⇒ Ty Γ,
unit_stab : {∆ Γ : Con} ⇒ (f : Sub ∆ Γ) ⇒

substTy f unit ≡ unit,
star : {Γ : Con} ⇒ Tm Γ unit,
star_stab : {∆ Γ : Con} ⇒ (f : Sub ∆ Γ) ⇒

substTm f star #〈unit_stab f〉
≡ star,

unit_elim : {Γ : Con} ⇒
{M : Ty (ext Γ unit)} ⇒
(m : Tm Γ (substTy (pair (id Γ) star) M)) ⇒
Tm (ext Γ unit) M,

unit_V : {Γ : Con} ⇒
{M : Ty (ext Γ unit)} ⇒
(m : Tm Γ (substTy (pair (id Γ) star) M)) ⇒
substTm (pair (id Γ) star) (unit_elim m)
≡ m

]}

Figure 1.4: CwF1, the GAT of CwFs supporting the unit type

unit is in fact a natural isomorphism, making it easy to define unit−elim.
The definition of bool is similar, using some two-element set {>,⊥} and defining

tt and ff to be the constant-> and constant-⊥ global sections, respectively. The
definition of bool−elim must be

bool−elim � (W, 1) :=
{
mtt � W if 1 = >
mff � W if 1 = ⊥.

These examples are relatively uninteresting from the standpoint of dependent type
theory: both consist of a single type, uniformly asserted across all contexts. The unit[],
star[], etc. laws essentially tell us that these types and terms don’t meaningfully depend
on the context. Indeed, these are the kinds of types which can exist in simple type
theory, i.e. the simply typed lambda calculus. The following examples are not “simple”
in this sense—they are properly dependent types.

In informal presentations of dependent type theory, Π-types are thought of as
functions whose codomain (possibly) depends on the supplied argument: unlike an
an ordinary function 5 : � → � which returns an element 5 (C) : � for each C : �, a
dependent function 5 :

∏
G : � �(G) returns an element 5 (G) : �(G), where now � is a

family of types indexed over �. To write such a function by _-abstraction, i.e. form
(_G → Φ) : ∏

G : � �(G), we need to come up with an “expression” Φ : �(G) which

47 Chapter 1. Type Theory as a Generalized Algebraic Theory

Lean—nouGAT

def CwF₂ : GAT := {[
include CwF;

bool : {Γ : Con} ⇒ Ty Γ,
bool_stab : {∆ Γ : Con} ⇒ (f : Sub ∆ Γ) ⇒

substTy f bool ≡ bool,
tt : {Γ : Con} ⇒ Tm Γ bool,
tt_stab : {∆ Γ : Con} ⇒ (f : Sub ∆ Γ) ⇒

substTm f tt #〈bool_stab f〉
≡ tt,

ff : {Γ : Con} ⇒ Tm Γ bool,
ff_stab : {∆ Γ : Con} ⇒ (f : Sub ∆ Γ) ⇒

substTm f ff #〈bool_stab f〉
≡ ff,

bool_elim : {Γ : Con} ⇒
{M : Ty (ext Γ bool)} ⇒
Tm Γ (substTy (pair (id Γ) tt) M) ⇒
Tm Γ (substTy (pair (id Γ) ff) M) ⇒
Tm (ext Γ bool) M,

bool_V_tt : {Γ : Con} ⇒
{M : Ty (ext Γ bool)} ⇒
(mtt : Tm Γ (substTy (pair (id Γ) tt) M)) ⇒
(mff : Tm Γ (substTy (pair (id Γ) ff) M)) ⇒
substTm (pair (id Γ) tt) (bool_elim mtt mff)
≡ mtt,

bool_V_ff : {Γ : Con} ⇒
{M : Ty (ext Γ bool)} ⇒
(mtt : Tm Γ (substTy (pair (id Γ) tt) M)) ⇒
(mff : Tm Γ (substTy (pair (id Γ) ff) M)) ⇒
substTm (pair (id Γ) ff) (bool_elim mtt mff)
≡ mff

]}

Figure 1.5: CwF2, the GAT of CwFs supporting the type of booleans

1.2. The Semantics of Type Theory as a GAT 48

is allowed to “refer to a free variable” G of �. Of course, syntactic notions like “free
variables” have been abstracted in our formalism of CwFs, replaced by context extension,
de Bruijn indices, and the like.

Definition 1.2.12. A CwF supports Π-types if it is equipped with the following
data.

pseudoAgda

Π : {Γ : Con} → (A : Ty Γ) → Ty (Γ ⊲ A) → Ty Γ
Π[] : {∆ Γ}{A}{B} → (f : Sub ∆ Γ) →

Π(A,B)[f] = Π(A[f], B [q(f ;A)])
lam : {Γ}{A}{B} → Tm (Γ ⊲ A, B) → Tm (Γ, Π(A,B))
app : {Γ}{A}{B} → Tm (Γ, Π(A,B)) → Tm (Γ ⊲ A, B)
lam[] : {∆ Γ}{A}{B}{t : Tm (Γ ⊲ A, B)} → (f : Sub ∆ Γ) →

(lam t)[f] = lam (t [q(f ;A)])
ΠV : {Γ}{A}{B} → (t : Tm (Γ ⊲ A, B)) → app(lam t) = t
Π[: {Γ}{A}{B} → (f : Tm (Γ, Π(A,B))) → lam(app f) = f

Similarly, the type
∑
G : � �(G) can be defined for a family � of types indexed over �.

This is the type of dependent pairs (0,1) where 1 : �(0)—generalizing the product type
� × �.

Definition 1.2.13. A CwF supports Σ-types if it is equipped with the following data.

pseudoAgda

Σ : {Γ : Con} → (A : Ty Γ) → Ty (Γ ⊲ A) → Ty Γ
Σ[] : {∆ Γ : Con}(A : Ty Γ)(B : Ty (Γ ⊲ A))(f : Sub ∆ Γ) →

Σ(A,B)[f] = Σ {Γ=∆} (A [f]) (B [q(f ;A)])
pair : {Γ}{A}{B} → Sub (Γ ⊲ A ⊲ B) (Γ ⊲ Σ(A,B))
pair[] : {∆ Γ : Con}(A : Ty Γ)(B : Ty (Γ ⊲ A))(f : Sub ∆ Γ) →

q(f ;Σ(A,B)) ◦ pair = pair ◦ q(f ;A,B)
p◦pair : {Γ}{A}{B} → (p (Σ(A,B))) ◦ pair = (p A) ◦ (p B)
Σ−elim : {Γ}{A}{B}{M : Ty (Γ ⊲ Σ(A,B))} →

Tm(Γ ⊲ A ⊲ B, M[pair]) → Tm(Γ ⊲ Σ(A,B), M)
ΣV : {Γ}{A}{B}{M}(m : Tm(Γ ⊲ A ⊲ B, M[pair])) →

(Σ−elim m)[pair] = m
Σ[: {Γ}{A}{B}{M}(m : Tm(Γ ⊲ A ⊲ B, M[pair])) →

(z : Tm(Γ ⊲ A ⊲ B, M[pair])) → (z[pair] = m) → z = Σ−elim m
Σ−elim[] : {∆}{Γ}{A}{B}{M} →

(m : Tm(Γ ⊲ A ⊲ B, M[pair])) → (f : Sub ∆ Γ) →
(Σ−elim m)[q(f ;Σ(A,B))] = Σ−elim {Γ=∆} (m [q(f ;A,B)])

There’s a bit of daylight between our intuitive idea of how to construct a term of

49 Chapter 1. Type Theory as a Generalized Algebraic Theory

Lean—nouGAT

def CwFΠ : GAT := {[
include CwF;

Pi : {Γ : Con} ⇒
(A : Ty Γ) ⇒ Ty (ext Γ A) ⇒ Ty Γ,

Pi_stab : {∆ Γ : Con} ⇒ (f : Sub ∆ Γ) ⇒
(A : Ty Γ) ⇒ (B : Ty (ext Γ A)) ⇒
substTy ∆ Γ f (Pi A B)
≡ Pi (substTy f A)

(substTy (pair
(comp f (p (substTy f A)))
(v (substTy f A)))

B),
lam : {Γ : Con} ⇒

{A : Ty Γ} ⇒ {B : Ty (ext Γ A)} ⇒
Tm (ext Γ A) B ⇒ Tm Γ (Pi A B),

app : {Γ : Con} ⇒
{A : Ty Γ} ⇒ {B : Ty (ext Γ A)} ⇒
Tm Γ (Pi A B) ⇒ Tm (ext Γ A) B,

lam_stab : {∆ Γ : Con} ⇒ (f : Sub ∆ Γ) ⇒
{A : Ty Γ} ⇒ {B : Ty (ext Γ A)} ⇒
(t : Tm (ext Γ A) B) ⇒
substTm f (Pi A B) (lam t)

#〈Pi_stab f A B〉
≡ lam (substTm (pair

(comp f (p (substTy f A)))
(v (substTy f A)))

t),
Pi_V : {Γ : Con} ⇒

{A : Ty Γ} ⇒ {B : Ty (ext Γ A)} ⇒
(t : Tm (ext Γ A) B) ⇒ app (lam t) ≡ t,

Pi_[: {Γ : Con} ⇒
{A : Ty Γ} ⇒ {B : Ty (ext Γ A)} ⇒
(f : Tm Γ (Pi A B)) ⇒ lam (app f) ≡ f

]}

Figure 1.6: CwFΠ, the GAT of CwFs supporting Π-types.

1.2. The Semantics of Type Theory as a GAT 50

Lean—nouGAT

def CwFΣ : GAT := {[
include CwF renaming (pair to pair_Sub);

Sigma : {Γ : Con} ⇒
(A : Ty Γ) ⇒ Ty (ext Γ A) ⇒ Ty Γ,

Sigma_stab : {∆ Γ : Con} ⇒ (f : Sub ∆ Γ) ⇒
(A : Ty Γ) ⇒ (B : Ty (ext Γ A)) ⇒
substTy ∆ Γ f (Sigma A B)
≡ Pi (substTy f A)

(substTy (pair_Sub
(comp f (p (substTy f A)))
(v (substTy f A)))

B),
pair : {Γ : Con} ⇒

{A : Ty Γ} ⇒ {B : Ty (ext Γ A)} ⇒
Sub (ext (ext Γ A) B) (ext Γ (Sigma A B)),

pair_comp : {∆ Γ : Con} ⇒
(A : Ty Γ) ⇒ (B : Ty (ext Γ A)) ⇒
comp

(pair_Sub (comp f (p (substTy f A))) (v
(substTy f A)))

pair
≡
comp

pair
(pair_Sub

(comp (pair_Sub (comp f (p (substTy f

A))) (v (substTy f A))) (p (substTy (pair_Sub (comp
f (p (substTy f A))) (v (substTy f A))) B)))

(v (substTy (pair_Sub (comp f (p
(substTy f A))) (v (substTy f A))) B))

)
]}

Figure 1.7: CwFΣ, the GAT of CwFs supporting Σ-types.

51 Chapter 1. Type Theory as a Generalized Algebraic Theory

type
∑
G : � �(G)—pair together a term 0 : � and a term 1 : �(0)—with the specification

of Σ-types given above. It’ll be helpful to develop this point a bit more, as it will serve
as useful contrast later on when we characterize Σ-types in directed type theory. We
therefore have the following results.

Proposition 1.2.14. In any CwF with Σ-types, there is a bijection

Pair : (B′ : Tm(Γ, �)) × Tm(Γ, � [id ,+ B′]) � Tm(Γ, Σ � �) : Unpair.

Proof. We realize this by constructing a substitution unpair : Sub (Γ B Σ � �) (Γ B
� B �) inverse to pair

unpair := (pΣ � �, Σ - elim v1, Σ - elim v0)

This is an inverse to pair: for the one direction, we have

unpair ◦ pair = (pΣ � � ◦ pair, (Σ - elim v1) [pair], (Σ - elim v0) [pair])
= (p� ◦ p�, (Σ - elim v1) [pair], (Σ - elim v0) [pair]) (p◦pair)
= (p� ◦ p�, v1, v0) (ΣV)
= idΓB�B� .

For the other direction, we prove that Σ - elim< =<[unpair] for arbitrary<. By Σ[,
it suffices to show that<[unpair] [pair] = <, which follows from the proof above
unpair ◦ pair = id. So then

idΣ � � = (pΣ � �, v0)
= (p� ◦ p� ◦ unpair, v0)
= (p� ◦ p� ◦ unpair, Σ - elim(v0 [pair])) (Σ[)
= (p� ◦ p� ◦ unpair, v0 [pair] [unpair]) (above)
= (p� ◦ p�, v0 [pair]) ◦ unpair
= (pΣ � � ◦ pair, v0 [pair]) ◦ unpair (p◦pair)
= (pΣ � �, v0) ◦ pair ◦ unpair (p◦pair)
= id ◦ pair ◦ unpair.

Now we’re ready to define the “external” versions, Pair and Unpair.

Pair (B′, C ′) := v0 [pair ◦ (id, B′, C ′)]
Unpair) ′ := ((Σ - elim v1) [id,) ′], Σ - elim v0) [id,) ′])

1.2. The Semantics of Type Theory as a GAT 52

These are mutually inverse, as claimed:

(Unpair(Pair(B′, C ′)))#1 = (Unpair(v0 [Pair ◦ (id, B′, C ′)]))#1

= (Σ - elim v1) [id, v0 [Pair ◦ (id, B′, C ′)]]
= (Σ - elim v1) [p� ◦ p� ◦ (id, B′, C ′), v0 [Pair ◦ (id, B′, C ′)]]
= (Σ - elim v1) [pΣ � � ◦ pair ◦ (id, B′, C ′), v0 [Pair ◦ (id, B′, C ′)]]
= (Σ - elim v1) [pΣ � �, v0] [Pair] [id, B′, C ′]
= (Σ - elim v1) [Pair] [id, B′, C ′]
= v1 [id, B′, C ′]
= B′

(Unpair(Pair(B′, C ′)))#2 = (Unpair(v0 [Pair ◦ (id, B′, C ′)]))#2

= (Σ - elim v0) [id, v0 [Pair ◦ (id, B′, C ′)]]
= v0 [id, B′, C ′]
= C ′

Pair(Unpair) ′) = v0 [pair] [id, (Σ - elim v1) [id,) ′], (Σ - elim v0) [id,) ′]]
= v0 [pair] [pΣ � �, Σ - elim(v1), Σ - elim(v0)] [id,) ′]
= v0 [pair] [unpair] [id,) ′]
= v0 [id,) ′] (above)
=) ′.

Definition 1.2.15. Given (: Tm(Γ, Σ��), write

pr1(() : Tm(Γ, �)
pr1(() := (Σ - elim v1) [id, (]
pr2(() : Tm(Γ, � [id, pr1(()])
pr2(() := (Σ - elim v0) [id, (]

i.e. pr1(() := (Unpair ()#1 and pr2(() := (Unpair ()#2.

Proposition 1.2.16. The projections are stable under substitution: for every
(: Tm(Γ, Σ��) and f : Sub Δ Γ

(pr1 () [f] = pr1(([f]) (pr2 () [f] = pr2(([f]) (1.2.17)

53 Chapter 1. Type Theory as a Generalized Algebraic Theory

Proof. Observe that the following square commutes.

ΔB (Σ��) [f] Γ B Σ��

Δ Γ

q (f;Σ��)

f

id,([f] id,(

So then:

(pr1 () [f] : = (Σ - elim v1) [id, (] [f]
= (Σ - elim v1) [q(f; Σ��)] [id, ([f]] (above)
= (Σ - elim(v1 [q(f;�, �)])) [id, ([f]] (Σ - elim[])
= (Σ - elim v1) [id, ([f]]
=: pr1(([f])

where the penultimate identity follows from the fact that q(f ;�, �) := (f◦p◦p, v1, v0).
The proof for pr2 is identical.

Finally, there will be another kind of type-former playing a central role in our
story: identity types. As indicated above, it is the modification of identity types into
hom-types which chiefly distinguishes directed type theory. In undirected type theory,
that is, standard Martin-Löf Type Theory, identity types come in two possible varieties:
intensional and extensional. Both seek tomake themetatheoretic judgmental equality
expressible within the object language, but do so to different extents: extensional
equality reflects judgmental equality exactly, so extensionally equal terms are indeed
equal judgmentally. Intensional equality, on the other hand, provides a coarser notion
of equality: there can be terms C, C ′ which are propositionally equal (i.e. the intensional
identity type Id(C, C ′) is inhabited) but which are not judgmentally equal. In the present
work, we’ll mostly be interested in intensional identity types, but we introduce both.

Definition 1.2.18. A CwF supports intensional identity types if it is equipped
with the following data.

1.3. A Signature Language for GATs 54

pseudoAgda

Id : {Γ : Con}{A : Ty Γ} → (t t’ : Tm(Γ, A)) → Ty Γ
Id[] : {∆ Γ : Con}{A : Ty Γ}{t}{t’} → (f : Sub ∆ Γ) →

Id(t,t’)[f] = Id (t[f], t’[f])
refl : {Γ}{A} → (t : Tm(Γ, A)) → Tm(Γ, Id(t,t))
refl[] : {∆ Γ : Con}{A : Ty Γ}{t} → (f : Sub ∆ Γ) →

reflₜ[f] = reflt[f]
J : {Γ}{A} → (t : Tm(Γ, A))
→ (M : Ty (Γ ⊲ A ⊲ Id(t[p], v₀)))
→ Tm(Γ, M[id , t , reflₜ])
→ Tm(Γ ⊲ A ⊲ Id(t[p], v₀), M)
J[] : {Γ}{A}{t}{M}{m : Tm(Γ, M[id , t , reflₜ])} →

(f : Sub ∆ Γ) → J(m[f]) = (J m)[q(f ; A, Id(t[p],v₀))]
JV : {Γ}{A}{t}{M} → (m : Tm(Γ, M[id , t , reflₜ])) →

(Jt,M m)[id , t , reflₜ] = m

Definition 1.2.19. A CwF supports extensional identity types if it is equipped
with the following data.

pseudoAgda

Eq : {Γ : Con}{A : Ty Γ} → (t t’ : Tm(Γ, A)) → Ty Γ
Eq[] : {∆ Γ : Con}{A : Ty Γ}{t}{t’} → (f : Sub ∆ Γ) →

Eq(t,t’)[f] = Eq(t[f], t’[f])
refl : {Γ}{A} → (t : Tm(Γ, A)) → Tm(Γ, Eq(t,t))
reflect : {Γ}{A}{t}{t’} → Tm(Γ, Eq(t,t’)) → t = t’
canon : {Γ}{A}{t}{t’} → (h : Tm(Γ, Eq(t,t’))) → h = reflₜ

1.3 A Signature Language for GATs
“We cannot undertake to define being without falling into this absurdity: because
we cannot define a word without starting with “it is” either expressed or implied.
So to define being, we would have to say “it is”, and thus use the word defined in
its definition.”

Blaise Pascal, Pensées et Opuscules

For us, a “type theory” means “the initial algebra of (some extension of) the GAT
of CwFs.” As we saw in the previous section, we’re able to articulate various systems
of type- and term-formers as GAT extensions of CwF; moreover, since contexts, sub-
stitutions, and context extension are also explicitly axiomatized in CwF, we can also
articulate operations on these data, such as occurs in modal and substructural type
theories. Every GAT has an initial algebra, so we can rest assured that, whatever strange

55 Chapter 1. Type Theory as a Generalized Algebraic Theory

system we devise in this manner, it makes sense to speak of its syntax model, i.e. think
of it as a type theory.

But, so far, we’ve only loosely, informally indicated (at the end of section 1.1) what
constitutes this initial algebra. Our goal in the present section is to be more precise.
We’ll do so by way of a universal method: we’ll identify a single GAT U with the
remarkable property that, if U has an initial algebra, then every GAT has an initial
algebra. How can we do this? Well, we’ll choose this U to be an extension of CwF, so
its initial algebra is a type theory. Specifically, the initial U-algebra will be a syntax for
writing down GATs, a signature language for GATs. This type theory is what we’ll
call oneGAT. We’ll be able to write down every GAT in the oneGAT syntax (recall that
the nouGAT syntax used above to introduce GATs is ultimately just syntactic sugar for
oneGAT). With this, we’ll be able to make definitions (such as the notions of G-algebra
and G-homomorphism) for arbitrary GATs G by induction—the GAT G will be a piece
of oneGAT syntax, built up recursively using the components of the oneGAT language.
Finally, we’ll be able to make precise our intuitive description of initial algebras from
above: recall, for instance, that we said the set of natural numbers would be defined as
the “terms-in-context” of the form

{[Nat : U, zero : Nat, succ : Nat ⇒ Nat]} ` t : Nat.

A GAT will be a context in the oneGAT language. In particular, the GAT of natural
number algebras N will be a context, which is what appears on the left of the turnstile
above. In a type-theoretic language like oneGAT, we will be able to speak of types (like
Nat) obtained from the context, and terms of those types, giving formal meaning to
the sequent above.

1.3.1 Introducing GATs
So let’s introduce oneGAT. We won’t actually articulate oneGAT as the initial algebra
of a GAT—this would be a bit circular, as GATs are themselves written in oneGAT!
Rather, we’ll assert it as a metatheoretic quotient inductive-inductive type; our
assumption that the “universal GAT has an initial algebra” is the assumption that we
actually do get syntax as declared in Figure 1.8, and can perform induction on this
syntax as in Remark 1.3.12.

Definition 1.3.1. The language oneGAT consists of the components

Con : Set

Sub : Con→ Con→ Set

Ty : Con→ Set

Tm : (G : Con) → Ty G→ Set

as given by the metatheoretic quotient inductive-inductive type in Figure 1.8.

Recall the different kinds of components we could add to a GAT: sorts, elements,
functions (elements and sorts depending on element(s) of other sorts), and equations.

1.3. A Signature Language for GATs 56

pseudoAgda

data Con : Set where
� : Con
⊲ :

(
G : Con

)
→Ty G→Con

data Sub : Con → Con→ Set where
id : Sub G G

◦ : Sub G H → Sub F G→ Sub F H

n : Sub G �
, :

(
g : Sub H G

)
→Tm H (A [g]) → Sub H (G ⊲ A)

c₁ : Sub H (G ⊲ A) → Sub H G
idl : id ◦ g = g
idr : g ◦ id = g
assoc : (h ◦ g) ◦ f = h ◦ (g ◦ f)
�[:

(
s : Sub G �

)
→ s = n

⊲V₁ : c₁ (g , t) = g

⊲[:
(
t : Sub H (G ⊲ A)

)
→ (c₁ t , c ₂ t) = t

,◦ : (g , t) ◦ f = (g ◦ f , t [f])

data Ty : Con → Set where
[] : Ty G→ Sub H G →Ty H

U : Ty G

El : Tm G U→ Ty G

Π :
(
X : Tm G U

)
→Ty (G ⊲ El X) → Ty G

Eq :
(
X : Tm G U

)
→ Tm G (El X) → Tm G (El X) → Ty G

[id] : A [id] = A
[◦] : (A [g]) [h] = A [g ◦ h]
U[] : U [g] = U
El[] : (El X) [g] = El (X [g])
Π[] : (Π X Y)[g] = Π (X [g]) (Y [g ◦ c₁(id) , c ₂ id])
Eq[] : (Eq X t t’)[g] = Eq (X [g]) (t [g]) (t’ [g])

data Tm : (G : Con) → Ty G → Set where
[] : Tm G A→ (g : Sub H G) → Tm H (A [g])
c ₂ : (t : Sub H (G ⊲ A)) → Tm H (A[c₁ t])
app : Tm G (Π X Y) → Tm (G ⊲ El X) Y

[id] : t [id] = t
[◦] : (t [g]) [h] = t [g ◦ h]
⊲V₂ : c ₂ (g , t) = t
app[] : (app f)[g ◦ c₁(id) , c ₂ id] = app(f[g])
reflect : Tm G (Eq X t t’) → t = t’

Figure 1.8: QIIT definition of the oneGAT language. Taken (with
slight modification) from [KKA19].

57 Chapter 1. Type Theory as a Generalized Algebraic Theory

These are precisely what kinds of things we’re able to write in oneGAT.That is, oneGAT
consists of a type theoretic language with a universe U, a specially-restricted kind of
Π-types, and extensional equality types. Let’s examine these one-by-one, and see how
the GATs introduced in section 1.1 can be expressed as the contexts of oneGAT, i.e. as
elements of the set Con.

Themost basic GAT is the empty GAT, which has no components and whose algebras
consist of no data (not even a carrier set). This is, of course, represented by the empty
oneGAT context, �. As noted above, for any other GAT we must begin by asserting a
sort. This is done by extending � by the universe U:

Example 1.3.2 (Sets—oneGAT). The GAT of sets (Example 1.1.1) is represented in
oneGAT as the following context.

oneGAT

�
⊲ U

If we want to use this sort (e.g. to declare elements of it, or have subsequent
components depend on it), then we need a way to refer to it within the oneGAT
language. As before, we use de Bruijn indices to abstract away from the difficulties of
named variables. We use slightly-different notations than we did in Definition 1.2.4, to
(hopefully) be able to keep things straight in cases where the GAT we’re articulating
has its own internal notion of de Bruijn indices (i.e. the GAT CwF and extensions of it).

Definition 1.3.3. Write wk for the substitution

c1(idGBA) : Sub (GBA) G.

We’ll make use of de Bruijn indices in the oneGAT language:

0 := c2(idGBA0) : Tm(GBA0,A0 [wk])
1 := 0[wk] : Tm(GBA1 BA0, �1 [wk ◦ wk])
2 := 1[wk] : Tm(GBA2 BA1 BA0,A2 [wk ◦ wk ◦ wk])
...

Given a dependent function term f : Tm(G,ΠXY) and an argument term
t : Tm(G,A), it’ll be convenient to use the abbreviation

f @ t := (app f) [id, t] : Tm(G,Y [id, t]).

The _@ _ operator will be left-associative, matching the right-associativity of⇒.

Given such a term X: TmGU, we can obtain El X: Ty G. This is how we’ll add
elements of a previously-declared sort to our GATs.

1.3. A Signature Language for GATs 58

Example 1.3.4 (Pointed Sets—oneGAT). The GATP of pointed sets (Example 1.1.2)
is represented in oneGAT as the following context.

oneGAT

�
⊲ U
⊲ El 0

Example 1.3.5 (Bipointed Sets—oneGAT). The GAT B of bipointed sets (Exam-
ple 1.1.3) is represented in oneGAT as the following context.

oneGAT

�
⊲ U
⊲ El 0
⊲ El 1

Now, recall the restrictions on the use of⇒ discussed in section 1.1: its domain had
to be small, i.e. a previously-declared sort. This prevented us from writing higher-order
functions, choice functions, etc. This restriction is encoded in oneGAT by the shape of
the Π type-former:

Π : (X: TmGU) → Ty(GB ElX) → Ty G.

Contrast this with the Π-formation given in Definition 1.2.12: the domain is not a type
(an element of Ty G), but rather a term of the universe U. The codomain is allowed to
be “large”, including U itself.

Example 1.3.6 (Natural Number Algebras—oneGAT). The GAT N of natural num-
ber algebras (Example 1.1.4) is represented in oneGAT as the following context.

oneGAT

�
⊲ U
⊲ El 0
⊲ Π 1 (El 2)

Example 1.3.7 (Even-Odd Algebras—oneGAT). The GAT EO of even-odd algebras
(Example 1.1.5) is represented in oneGAT as the following context.

59 Chapter 1. Type Theory as a Generalized Algebraic Theory

oneGAT

�
⊲ U
⊲ U
⊲ El 1
⊲ Π 2 (El 2)
⊲ Π 2 (El 4)

Example 1.3.8 (Quivers—oneGAT). The GAT Quiv of quivers (Example 1.1.6) is
represented in oneGAT as the following context.

oneGAT

�
⊲ U
⊲ Π 0 (Π 1 U)

Example 1.3.9 (Reflexive Quivers—oneGAT). The GAT rQuiv of reflexive quivers
(Example 1.1.7) is represented in oneGAT as the following context.

oneGAT

�
⊲ U
⊲ Π 0 (Π 1 U)
⊲ Π 1 (El (1 @ 0 @ 0))

Recall that we defined rQuiv in nouGAT by include-ing the GATQuiv. Observe,
then, that Quiv is a prefix of rQuiv:

rQuiv = QuivB Π 1 (El (1@0@0)) .

This is precisely what the include keyword means.
Finally, oneGAT comes equipped with extensional identity types, so we can add

equations to our GAT signatures.

Example 1.3.10 (Groups—oneGAT). The GAT Grp of groups (Example 1.1.9) is
represented in oneGAT as the following context.

1.3. A Signature Language for GATs 60

oneGAT

�
⊲ U
⊲ El 0
⊲ Π 1 (Π 2 (El 3))
⊲ Π 2 (Eq (1 @ 2 @ 0) 0)
⊲ Π 3 (Eq (2 @ 0 @ 3) 0)
⊲ Π 4 (Π 5 (Π 6 (Eq (5 @ 2 @ (5 @ 1 @ 0)) (5 @ (5 @ 2 @ 1) @ 0))))
⊲ Π 5 (El 6)
⊲ Π 6 (Eq (5 @ (1 @ 0) @ 0) 6)
⊲ Π 7 (Eq (6 @ 0 @ (2 @ 0)) 7)

All the equations in Grp are between elements of the one sort (the carrier set of
the group), i.e. are homogeneous equalities. But we also want to express heterogeneous
equalities, that is, equations which are only well-formed by virtue of a previous equation.
For instance, in the definition of ‘CwF’, we assert the equation

C [id] = C

for all C : Tm(Γ, �). But the left-hand side of this is an element of the set Tm(Γ, �[id])
and the right-hand side is an element of Tm(Γ, �). It is only due to the equation
�[id] = � that we can make this equation: we transport C [id] along the equation
�[id] = � to get an element of Tm(Γ, �), and this we equate to C . Recall that we
treat such transports in the metatheory as implicit, but in nouGAT we marked them
explicitly. We will do likewise in oneGAT: the Eq type-former insists that the terms
being equated are literally of the same type, so to define CwF we must make use of the
following transport operator.

Definition 1.3.11. [KKA19, p. 12] oneGAT has an operation

X: TmGU Y : Ty (GB El X)
t t′ : TmG (El X) eq: TmG Eq t t′ y : TmG (Y [id, t])

transp eq y : TmGY [id, t′] .

To obtain transp eq y, use reflect to turn eq into a metatheoretic equality t = t′. Then
transport y along this equality.

This transp operation is put to use in CwF: see Figure 1.9. There the equation
between C [id] and C is the last line; the innermost context (where we’re formulating
the equation) is

CatB El 6B · · ·B El 15B El(6@0) B El(3@1@0)

So, in this context, the de Bruijn index 2 is some Γ : Con (the sort of contexts of the
CwF—be careful to distinguish this from Con); the index 1 is some type � : Ty Γ; and

61 Chapter 1. Type Theory as a Generalized Algebraic Theory

oneGAT

Cat
⊲ El 6
⊲ Π 7 (El (7 @ 0 @ 1))
⊲ Π 8 (Π (8 @ 0 @ 2) (Eq 0 (2 @ 1)))
⊲ Π 9 U
⊲ Π 10 (Π 11 (Π (11 @ 1 @ 0) (Π (3 @ 1) (El (4 @ 3)))))
⊲ Π 11 (Π (2 @ 0) (Eq (2 @ 1 @ 1 @ (11 @ 1) @ 0) 0))
⊲ Π 12 (Π 13 (Π 14 (Π (5 @ 0) (Π (15 @ 3 @ 2) (Π (16 @ 3 @ 2) (Eq (7 @

4 @ 3 @ 0 @ (7 @ 5 @ 4 @ 1 @ 2)) (7 @ 5 @ 3 @ (15 @ 5 @ 4 @ 3
@ 0 @ 1) @ 2)))))))

⊲ Π 13 (Π (4 @ 0) U)
⊲ Π 14 (Π 15 (Π (6 @ 0) (Π (16 @ 2 @ 1) (Π (4 @ 2 @ 1) (El (5 @ 4 @ (8

@ 4 @ 3 @ 1 @ 2)))))))
⊲ Π 15 (Π (6 @ 0) (Π (3 @ 1 @ 0) (Eq (transp (6 @ 2 @ 1) (3 @ 2 @ 2 @

1 @ (16 @ 2) @ 0)) 0)))

Figure 1.9: The GAT of CwFs, up through the heterogeneous equation
between C [id] and C . See Appendix A for the whole GAT.

index 0 is a term C : Tm(Γ, �). The de Bruijn index 6 is the identity law for Ty: that
�[id] is � for any type �. So we instantiate this law for our context and type, 6@ 2@1.
Then C [id] is formally written as

3@2@2@1@ (16@2)@0.

3 is the term-substitution operation; it requires us to explicitly supply the domain and
codomain of the substitution (both of which are Γ, i.e. 2) and the type (�, i.e. 1). Then
16@ 2 is idΓ , and 0 is C . So, we transport this along 6@ 2@1, and then equate it to C , i.e.
0. This is the component appearing in Figure 1.9.

The oneGAT presentation of all the GATs in section 1.1 (and all the GATs in this
thesis) are given in Appendix A. As demonstrated by the previous paragraph, working
explicitly with oneGAT quickly gets very tedious and confusing, and it becomes very
difficult to recognize what structure is being encoded. It is intentionally a very low-level
representation, a “machine code” for GATs. It is for this reason that we introduced
nouGAT: to serve as a readable interface for oneGAT. The complex oneGAT samples
in this thesis (like Figure 1.9) were not produced by hand: they were produced by the
nouGAT-to-oneGAT parser implemented in Lean. But the reason we have oneGAT is
for its inductive structure: every GAT is of the form �BA0BA1B · · ·BA= , where the
A8 ’s are formed by U, El, Π, Eq, etc. This means we can make definitions on oneGAT
by induction; we now turn our attention to this process.

1.3. A Signature Language for GATs 62

1.3.2 Eliminating GATs
A crucial property of a formal language is that every piece of syntax is built up from
the constructors of the language in a unique way. In particular for oneGAT:

• every G : Con is either � or G′ BA for some G′ and A;
• every A : Ty G is either U, El X, ΠXY , or EqXt t′.

The ‘either-or’s here are exclusive: � is not G′ BA for any G′ and A, U is not El X for
any X, and so on. From these kinds of observations, we get an idea of how to perform
elimination on oneGAT, and specifically how to make a uniform definition across all
GATs: define just what to do on the oneGAT constructors.

Remark 1.3.12. Throughout, we’ll want to make definitions inductively on the struc-
ture of the oneGAT language (e.g. Definition 1.3.13). For instance, we’ll want to
define � of the form “oneGAT→ Set”, i.e. four components

�Con : Con→ Set

�Sub : SubHG→ �Con (H) → �Con (G)
�Ty : Ty G→ �Con (G) → Set

�Tm : Tm(G,A) → (Γ : �Con (G)) → �Ty (A) Γ.

along with witnesses that these definitions respect the required equalities, e.g.

� (assoc) : ∀I, �Sub ((h ◦ g) ◦ f) I = �Sub (h ◦ (g ◦ f)) I.

In principle, we’d need to define � on all 32 components of Figure 1.8. However, in
practice, many of the components end up being trivial; in particular, the equality
checks (like � (assoc)) will often end up being refl or UIP. Therefore, we’ll generally
just present the main components of interest, like �Con (GBA), �Ty (U), �Ty (ΠXY),
and �Tm (El X).

It’s worth noting that the definitions of �Con , �Sub , �Ty and �Tm must necessarily be
simultaneous—we cannot (in general) define �Con first, then �Ty , etc., or any other order.
This is because the specification of oneGAT given in Figure 1.8 is inductive-inductive:
the components of Ty (e.g. Π) refer to the components of Con (e.g. B), the components
of Tm (e.g. c2) refer to the components of Sub, and so on. We can’t untangle these
from each other.

As our first example, we precisely define the notion of G-algebra

Definition 1.3.13. For any GAT G, define the type G-Alg of G-algebras as GA,

63 Chapter 1. Type Theory as a Generalized Algebraic Theory

where (
G : Con

)A
: Set(

h : SubGG
)A

: GA → HA(
A : TyG

)A
: GA → Set(

t : TmGA
)A

: (Γ : GA) → AA Γ.

is defined inductively on the structure of oneGAT:

�A := {★}

(GBA)A :=
(
Γ : GA

)
×AA Γ

UA Γ := Set

(El X)A Γ := XA Γ

(Π XY)A Γ :=
(
x: XA Γ

)
→ YA Γ x

(app t)A (Γ, x) := tA Γ x)
(Eq s t)A Γ := (sA Γ = tA Γ).

For the full definition, see [KKA19, Appendix A].

Though we don’t make this claim precise, a survey of the oneGAT examples will
indicate that the only terms we deal with are de Bruijn indices and applications f @ t
(and transports). So, in order to use a definition like (_)A, it’s helpful to figure out what
(f @ t)A is in terms of fA and tA; and what 0A, 1A, 2A, etc. are.

Proposition 1.3.14. For f : Tm(G,Π X Y) and t : Tm(G, El X) and Γ : G-Alg,

(f @ t)A Γ = fA Γ (tA Γ).

Proof.

(f @ t)A Γ = ((app f) [id, t])A Γ

= (app f)A ((id, t)A Γ)
= (app f)A (idA Γ, tA Γ)
= (app f)A (Γ, tA Γ)
= fA Γ (tA Γ)

1.3. A Signature Language for GATs 64

Proposition 1.3.15. For G : Con of length =a and< < = is a de Bruijn index, then for
Γ = (G1, G2, . . . , G=) : GA,

mA Γ = G=−< .

aWhere “length” is defined inductively: � has length 0, and GB A has length = + 1 if G has length
=.

With these, we can calculate out simple cases of algebras:

Example 1.3.16.

• Set-Alg:

(�B U)A = (Γ : �A) × UA Γ

= {★} × Set

• P-Alg:

(�B UB El 0)A = (Γ : (�B U)A) × (El 0)A Γ

= {★} × (- : Set) × (El 0)A (★, -) (above)
= {★} × (- : Set) × 0A (★, -)
= {★} × (- : Set) × - (Proposition 1.3.15)

• N-Alg:

(�B UB El 0B Π 1 (El 2))A

= (Γ : (�B UB El 0)A) × (Π 1 (El 2))A Γ

= {★} × (# : Set) × (I : #) × (Π 1 (El 2))A (★, # , I) (above)
= {★} × (# : Set) × (I : #) × ((= : 1A(★, # , I)) → (El 2)A(★, # , I, =))
= {★} × (# : Set) × (I : #) × ((= : 1A(★, # , I)) → 2A(★, # , I, =))
= {★} × (# : Set) × (I : #) × ((= : #) → #) (Proposition 1.3.15)
= {★} × (# : Set) × # × (# → #)

• Quiv-Alg

(�B UB Π 0 (Π 1 U))A

= (Γ : (�B U)A) × (Π 0 (Π 1 U))A Γ

= {★} × (+ : Set) × (Π 0 (Π 1 U))A (★,+) (above)
= {★} × (+ : Set) × ((E0 : 0A(★,+)) → (Π 1 U)A(★,+ , E0))
= {★} × (+ : Set) × ((E0 : +) → (E1 : 1A(★,+ , E0) → UA(★,+ , E0, E1))
= {★} × (+ : Set) × (+ → + → Set)

• rQuiv-Alg

65 Chapter 1. Type Theory as a Generalized Algebraic Theory

(�B UB Π 0 (Π 1 U) B Π 1 (El(1@0@0)))A

= (Γ : (�B UB Π 0 (Π 1 U))A) × (Π 1 (El(1@0@0)))A Γ

= {★} × (+ : Set) × (� : + → + → Set) × (Π 1 (El(1@0@0)))A (★,+ , �)
= {★} × (+ : Set) × (� : + → + → Set) × ((E : +) → ((1@0)@0)A(★,+ , �, E))
= {★} × (+ : Set) × (� : + → + → Set) × ((E : +) → � E E) (below)

((1@0)@0)A(★,+ , �, E) = ((1@0)A(★,+ , �, E)) 0A(★,+ , �, E)
= (1A(★,+ , �, E)) (0A(★,+ , �, E)) (0A(★,+ , �, E))
= � E E

1.3.3 Initial Algebras
The construction of the initial algebra for an arbitrary GAT G is rather involved, so
we’ll just make a few observations about the construction (which hopefully make it
easier to understand) and refer the reader to [KKA19, p. 14] and [KKA19, Appendix A]
for all the technical details.

The key point, which we developed informally above, is that the initial G-algebra
consists of the data whose existence can be derived from G alone. In other words, the
initial G-algebra contains all—and only—the “stuff” which necessarily follows from
the mere concept of structure encoded in G. We make this precise using the oneGAT
language: for every sort symbol S in G, the carrier set interpreting S in the initial
G-algebra will be the oneGAT terms-in-context TmG (El S).

Consider the simple case of pointed sets, the GAT P—written {[X : U, x0 : X]} in
nouGAT, or �B UB El 0 in oneGAT. A P-algebra consists of a set plus an element of
that set; for the initial P-algebra, we’ll take the set to be

1 := Tm P (El 1)

i.e. the collection of all those terms-in-context

{[X : U, x : X]} ` t : X.

Since X is completely abstract here, all we “know” about it is that it comes equipped
with a point x; we will therefore be able to conclude (see below) that the oneGAT term

0: Tm P (El 1)

is indeed the only such point, i.e. the initial pointed set is a singleton (as the notation 1
suggests).

Likewise with natural number algebras: the carrier set of the initial N-algebra (i.e.
the natural numbers) will be

ℕ := Tm N (El 2).
This set contains a chosen element, “zero”, which (humorously) ends up being the de
Bruijn index 1:

I4A> := 1: Tm N (El 2)

1.3. A Signature Language for GATs 66

and, for the endofunction BD22 : ℕ→ ℕ, we take the operation of applying the endo-
function specified in the signature N, i.e. the de Bruijn index 0: Tm N (Π 1 (El 2)):

BD22 := _t→ 0@ t : ℕ→ ℕ.

This is straightforward enough to do for these simple, concrete cases. But it’s much
more involved to define this for generic G. In particular, we note that it’s not possible
to define the initial G-algebra for all G by induction on just G. This is because the
definition is not straightforwardly compositional: by adding additional constructors
to a GAT, the character of its initial algebra can change drastically. Consider: we can
extend the GAT P of pointed sets to the GAT N of natural number algebras by the
addition of just one constructor. But the carrier sets for their initial algebras,

TmP (El 1) and TmN (El 2),

respectively, aren’t related in any obvious way—we don’t obtain the latter as some
modification of the former. More abstractly: say, F = GBUB T for some telescope T ,
and write S for the length of T , i.e. the de Bruijn index picking out the sort symbol
appearing between G and T . We want to say that the set interpreting the sort S in the
initial F-algebra is

Tm F (El S).
But if we were defining initial algebras by straightforward induction, then the entirety
of F wouldn’t be in scope throughout the induction: when defining the initial algebra
interpretation of S , we would only have access to G. But this is rather silly: it’s only in
the telescope T that the sort symbol S is even available, so any constructor for terms
of this sort must be in T . So, the moral of this story: we need to keep the entire GAT in
scope throughout the induction, because every component is (potentially) relevant in
producing terms.

Accordingly, KKA generalize the induction, fixing some GAT F and then construct-
ing

(G : Con)C : (g : Sub F G) → GA

(A : Ty G)C : (g : Sub F G) → TmF (A[g]) → AA(GC g)
(h : Sub G H)C : (g : Sub F G) → HC(h ◦ g) = hA(GCg)
(t : TmGA)C : (g : Sub F G) → AC g (t[g]) = tA(GCg)

by quotient induction-induction on the oneGAT structure. Then, at the end of the day,
the initial F-algebra can be obtained as FC(idF). This allows us to keep the entire GAT
(in this case, F) constantly in scope as we perform the induction (G is the variable of
induction here), as is necessary.

In particular, the key clause of this definition is

UC (g : Sub F G) (X: TmF (U[g])) := TmF (El X).

Notice that the right-hand side doesn’t depend on G: as we said above, we want the
whole GAT F to be used when interpreting the sorts as sets of terms, not the variable
of induction, G.

67 Chapter 1. Type Theory as a Generalized Algebraic Theory

Let us note that, in defining (_)C, KKA explicitly note their metatheoretic coercions
(though these often end up being trivial in usual cases). For instance, one clause of the
definition is

(El X)C (g : Sub F G) (t : TmF ((El X) [g])) := coe (XCg) t.

What’s happening here is that we are given

t : TmF ((El X) [g])

and we need to produce

(El X)C g t : (El X)A(GCg).

But, we can also make use of XC(g), which, since X: TmGU, is a (metatheoretic)
equation

UC g (X[g]) = XA(GCg)
i.e.

TmF ((El X) [g]) = XA(GCg).
Notice the left-hand side is the type of t and the right-hand side is the desired type of
(El X)C g t (recall that (El X)A Γ = XA Γ). We’ve generally been treating coercions
(and transports) in the metatheory as happening implicitly, so we would just write
(El X)C g t := t, but it’s worth noting that this only makes sense by virtue of XC(g).

For demonstration, we conclude with the calculations of the initial algebras for a
few choice GATs. Here, all metatheoretic transports and coercions are made implicit.

Example 1.3.17.

SetC idSet = (�B U)C id

= (�C(c1 id),UC (c1 id) (c2 id))
= (★, Tm Set (El 0))

PC idP = (�B UB (El 0))C id

= ((�B U)C(c1 id), (El 0)C (c1 id) (c2 id))
= (�C(c1(c1 id)),UC (c1(c1 id)) (c2(c1 id)), (El 0)C (c1 id) 0)
= (★,UC (c1(c1 id)) 1, 0)
= (★, TmP (El 1), 0)

NC idN = (�B UB El 0B Π 1 (El 2))C id

= (�B UB (El 0))C(c1 id), (Π 1 (El 2))C (c1 id) 0)
= (★, Tm N (El 2), 1, (Π 1 (El 2))C (c1 id) 0)
= (★, Tm N (El 2), 1, _t→ (El 2)C(c1 id, t) (0@ t))
= (★, Tm N (El 2), 1, _t→ 0@ t)

1.3. A Signature Language for GATs 68

1.3.4 Concrete CwFs
Let’s return to ourmotivating example: the natural numbers. We have syntax forwriting
down the abstract concept of the natural numbers as the GAT N. This GAT provides a
recipe for various kinds of structures: the type N-Alg of N-algebras, homomorphisms
of N-algebras, the initial N-algebra ℕ, etc. All these structures have the same basic
shape in common, matching the shape of the GAT N:

• Data corresponding to the sort Nat : U. For N-algebras, this was a set (for
the initial algebra, a particular set); for nat-algebra homomorphisms, it was a
function.

• Data corresponding to the element zero : Nat. For algebras, this was an ele-
ment; for homomorphisms it was an equation saying that the function preserved
the chosen element.

• Data corresponding to the function succ : Nat ⇒ Nat. For algebras, this
was an operation on the carrier set; for homomorphisms, it was a proof that the
underlying function commuted with the respective endofunctions.

We can extend this story to cover the process of induction. Recall that the “input” to
induction also has the same “N-shape”:

pseudoAgda

record indData : Set where
P : ℕ→ Set
BC : P zero
IS : (n : ℕ) → P n→ P (succ n)

Here, the data corresponding to Nat is instead a predicate on ℕ; the data corre-
sponding to zero is a witness of this predicate holds of the element I4A> : ℕ; and the
data corresponding to succ is an operation transporting witnesses of the predicate
across the function BD22 : ℕ→ ℕ. Now, this logical predicate structure is stated with
respect to the initial N-algebra, but we can formulate it for an arbitrary N-algebra as
follows.

Definition 1.3.18. A displayed N-algebra on a N-algebra (#, I, B) consists of
• a family of sets #D : # → Set;
• an element ID : #D I; and
• a dependent function BD : (= : #) → #D = → #D(B =).

Write (#D, ID, BD) : N-DAlg(#, I, B) to mean that (#D, ID, BD) is a displayed N-
algebra on (#, I, B).

The word “displayed” is taken from Ahrens and Lumsdaine [AL19]. It reflects the
intuition that a proof-relevant predicate #D : # → Set can be pictured as a family of
sets “over” the set # , and the additional structure ID, BD making this into a displayed
algebra is likewise displayed over the data in the “base” algebra (#, I, B). Now, Ahrens
and Lumsdaine do not introduce displayed nat-algebras; rather, they study the displayed
algebras for a different GAT: categories.

69 Chapter 1. Type Theory as a Generalized Algebraic Theory

Definition 1.3.19. A displayed category on a category Γ is given by the following
data.

pseudoAgda

record Cat−DAlg (Γ : Cat−Alg) : Set where
ObjD : |Γ| → Set
HomD : {W ₀ W₁ : |Γ|} → ObjD W ₀ → ObjD W₁ → Γ [W ₀,W₁] → Set
idD : {W : |Γ|} → (WD : ObjD W) → HomD WD WD idW
compD : {W ₀ W₁ W ₂ : |Γ|}{W ₀₁ : Γ [W ₀ , W₁]}{W₁₂ : Γ [W₁ , W ₂]} →

{W ₀D : ObjD W ₀}{W₁D : ObjD W₁}{W ₂D : ObjD W ₂} →
HomD W₁D W ₂D W₁₂ → HomD W ₀D W₁D W ₀₁ →
HomD W ₀D W ₂D (W₁₂ ◦ W ₀₁)

idrD : {W ₀}{W₁}{W ₀D}{W₁D}{W ₀₁} → (W ₀₁D : HomD W ₀D W₁D W ₀₁) →
compD (idD W₁D) W ₀₁D = W ₀₁D

idlD : {W ₀}{W₁}{W ₀D}{W₁D}{W ₀₁} → (W ₀₁D : HomD W ₀D W₁D W ₀₁) →
compD W ₀₁D (idD W ₀D) = W ₀₁D

assD : {W ₀}{W₁}{W ₂}{W ₃}{W ₀D}{W₁D}{W ₂D}{W ₃D}{W ₀₁}{W₁₂}{W ₂₃} →
(W ₀₁D : HomD W ₀D W₁D W ₀₁) → (W₁₂D : HomD W₁D W ₂D W₁₂) →
(W ₂₃D : HomD W ₂D W ₃D W ₂₃) →
compD W ₂₃D (compD W₁₂D W ₀₁D) = compD (compD W ₂₃D W₁₂D) W ₀₁D

Given a displayed category � over Γ, we’ll sometimes write �[W01 | 00, 01] for
�.HomD 00 01 W01 and write _ ◦D _ for the displayed composition operator �.compD.

We’ve done the same thing here as in Definition 1.3.18, but replacing N with Cat:
for every sort, a predicate; for every element, a witness that the predicate holds of that
element; for every function, an appropriate transformation of witnesses. This kind of
definition can be made generically for any GAT.

Definition 1.3.20. For any GAT G and Γ : G-Alg, define the type G-DAlg(Γ) of
displayed G-algebras on Γ as GD(Γ), where(

G : Con
)D

: GA → Set(
h : SubGH

)D
: {Γ : G-Alg} → GD Γ → HD(hA Γ)(

A : TyG
)D

: {Γ : G-Alg} → GD Γ → AA Γ → Set(
t : TmGA

)D
: {Γ : G-Alg} → (ΓD : GD Γ) → AD ΓD (tA Γ)

1.3. A Signature Language for GATs 70

is defined inductively on the structure of oneGAT:

(GBA)D (Γ, U) := (ΓD : GD Γ) ×AD ΓD U

UD ΓD) :=) → Set

(El X)D ΓD x := XD ΓD x

(ΠXY)D ΓD 5 := {x: XA Γ} → (xD : XD ΓD x) → YD (ΓD, xD) (5 x)
(Eq s t′)D ΓD eq tr eq (sD ΓD) = (tD ΓD)

For the full definition, see [KKA19, Appendix A].

In the present work, we’ll mainly be interested in displayed categories, and closely-
related examples (displayed setoids, preorders, and groupoids). But the notion of
displayed structure is an interesting and flexible one, about which much can be said.
For instance, as a brief tangent, let us note that proof-irrelevant displayed algebras
(i.e. displayed algebras where all the predicates take values in Prop rather than Set)
correspond to sub-algebras. The G = Grp case is paradigmatic: a proof-irrelevant
displayed group on some group (�, 4, ∗, 8) consists of a predicate �D : � → Prop along
with

• 4D : �D 4

• ∗D : (6 6′ : �) → �D 6→ �D 6′→ �D(6 ∗ 6′).
• 8D : (6 : �) → �D 6→ �D(8 6)

The other components are trivial (they’re equalities between elements of �D 6, which
we assume to be a Prop). Now, these are exactly the requirements of a subgroup � of
� (with�D6 being the predicate that 6 ∈ �): it contains the identity element, and it’s
closed under the group operation and group inverses. So this makes precise the idea
that a “sub-structure” is a structure that is “closed under all the relevant operations”.
We won’t develop this idea further, but there will be a few places where we speak of
sub-algebras (e.g. in section 1.4 and Proposition 2.2.1), where we could achieve greater
generality by explicitly considering proof-irrelevant sub-algebras.

But insteadwe’re going to consider the other half of the process of natural number in-
duction: the output. If we supply a displayed N-algebra (%, ��, �() over (ℕ, I4A>, BD22),
then the principle of mathematical induction says we get a dependent function of shape

elim : (= : ℕ) → % (=)

with the particular property that elim I4A> = �� and elim(BD22 =) = �((=, elim =). This
is also N-shaped: now the Nat sort corresponds to the elim-function, which is some
kind of section of the predicate % , and the zero and succ components correspond to
the V-laws of the induction principle just mentioned. Once again, this notion can be
generalized to any GAT.

Definition 1.3.21. For any GAT G, any Γ : G-Alg, and any ΓD : GD Γ, define the

71 Chapter 1. Type Theory as a Generalized Algebraic Theory

type G-Sect Γ ΓD of sections of ΓD as GS Γ ΓD, where(
G : Con

)S
: (Γ : GA) → GD Γ → Set(

h : SubGH
)S
: {Γ : G-Alg}{ΓD : GD Γ} → GS Γ ΓD → HS (hA Γ) (hD ΓD)(

A : TyG
)S
: {Γ}{ΓD} → GS Γ ΓD → (U : AA Γ) → AD ΓD U → Set(

t : TmGA
)S
: {Γ}{ΓD} → (ΓS : GS Γ ΓD) → AS ΓS (tA Γ) (tD ΓD)

is defined inductively on the structure of oneGAT:

(GBA)S (Γ, U) (ΓD, UD) := (ΓS : GS Γ ΓD) ×AS ΓS U UD

US ΓS))D := (G :)) →)D G

(El X)S ΓS x xD := XS ΓS x = xD

(ΠXY)S ΓS 5 5 D := (x: XA Γ) → YS (ΓS, refl) (5 x) (5 D(XS ΓS x))

For the full definition, see [KKA19, Appendix A].

The notion of section takes the output of natural number induction, an abstracts
what kind of thing it is to make sense for an arbitrary GAT. But we can go further: every
GAT admits a principle of induction.

Proposition 1.3.22. [KKA19, p. 17] For every GAT G and every displayed G-algebra
ΓD over the initial G-algebra G, there is a section

elimG ΓD : G-Sect G ΓD.

The proof of this claim, like the construction of initial algebras themselves, requires
a more generalized quotient induction-induction. The Con motive used to define elim
for a fixed GAT F and a fixed displayed algebra ΦD on the initial F-algebra F is

GE : (g : Sub F G) → GS (gA F) (gD ΦD).

Then, FE(idF) gives us an element of FS F ΦD, as desired. We once again refer the
reader to [KKA19, Appendix A] for the full details of (_)E.

This result allows us to perform some parametricity-style reasoning about these
initial algebras. For instance, we said above that the initial pointed set was a singleton set
(and denoted it 1. Our informal reasoning was that this set consists of terms-in-context

{[X : U, x : X]} ` t : X

and that the type X here is completely abstract—we don’t “know” anything about it
besides that it comes equipped with x. Therefore, there’s no other way to construct
terms of type X, so it must be just x. Similarly, the initial Set-algebra is the set of
terms-in-context where we don’t even have x:

{[X : U]} ` t : X.

1.3. A Signature Language for GATs 72

Here, the abstractness of X means we have no way to construct such a t, so this set
should be empty. And in the case ofN, we think that the carrier set of the initial algebra,
ℕ, the set of terms-in-context

{[Nat : U, zero : Nat, succ : Nat ⇒ Nat]} ` t : Nat

should just consist of the standard natural numbers: our only way to make terms t like
this should be by repeatedly applying succ to zero.

Reynolds [Rey83] famously made this kind of “abstractness” precise by way of logi-
cal relations: from the fact that the constructs of the language appropriately preserve
logical relations, we can rigorously reason about what kinds of terms can and cannot
be constructed. Here, we’re not dealing with logical relations, but rather logical predi-
cates—the displayed algebras. Proposition 1.3.22 is thus not a statement of relational
parametricity, but unary parametricity. But unary parametricity is still a powerful
tool for these kinds of arguments.

Corollary 1.3.23. The initial Set-algebra is the empty set.

Proof. Write Set for the initial set. Define the displayed Set-algebra % : Set→ Set
by

% (G) := ∅.
This is a displayed Set-algebra on Set—there are no other components to respect. So,
by Proposition 1.3.22, obtain a section

elim % : Set→ ∅.

Therefore, Set must be empty.

Corollary 1.3.24. Writing (1, G0) for the initial P-algebra, we have that

1 = {G0}.

Proof. Consider the predicate % : 1→ Set given by

% (G) := (G = G0)

(where we interpret the right-hand side as the set {★ | G = G0}, i.e. the empty set if
G ≠ G0 and the singleton set {★} if G = G0). This is a displayed P-algebra, because
we have

★: % (G0);
therefore, by Proposition 1.3.22 obtain

elim % : (G : 1) → G = G0

and conclude 1 = {G0}.

73 Chapter 1. Type Theory as a Generalized Algebraic Theory

Proving thatℕ consists of exactly the standard natural numbers is a bit more subtle,
since we can’t write infinite disjunctions like

(G = I4A>) ∨ (G = BD22 (I4A>)) ∨ (G = BD22 (BD22 (I4A>))) ∨ · · ·

We can, however, do the following.

Corollary 1.3.25. For every = : ℕ, either = = I4A> or = = BD22 (=′) for some =′ : ℕ.

Proof. This predicate,

% (G) := (G = I4A>) ∨ ((G′ : ℕ) × G = BD22 (G′))

is a displayed N-algebra over (ℕ, I4A>, BD22):
• I4A> = I4A> , so we have % (I4A>);
• for any = : ℕ, we can prove % (BD22 =) by the right disjunct, putting G′ = = (we
don’t even need the inductive hypothesis, % (=)).

So obtain the claim by Proposition 1.3.22.

We could abstract the claim “all displayed algebras admit a section” to be a property
of a given algebra; that is, we could say Γ : G-Alg is “inductive” if every displayed
algebra ΓD over Γ has a section elim Γ ΓD. Then Proposition 1.3.22 is just the claim
that the initial algebra in particular is always “inductive” in this sense. There’s some
use to this, particularly when G encodes a type-theoretic language (i.e. is an extension
of CwF): we might say that a CwF C is contextual when it’s possible to perform
induction on contexts, i.e. every displayed CwF over C has a section. This notion of
“contextuality” is formulated differently than the standard notion (see e.g. [CCD21,
Defn. 2]), which instead insists on an appropriate length function ℓ : Con → ℕ. Such a
length function can easily be defined when C is contextual in our sense: just construct
the displayed CwF with ConD := ℕ and •D := 0 and (Γ B �)D ΓD �D := ΓD + 1 (the
other motives—SubD, TyD, and TmD—are trivial).

Now consider the following construction: say we have two categories, Δ and Γ, a
functor f : Δ⇒ Γ and a displayed category� over Γ. Then, what we can do is reindex �
alongf to get a displayed category overΔ; we’ll suggestively call this�[f] : Cat-DAlg Δ.
�[f] is defined by

�[f] .ObjD X := �.ObjD (f X)
(�[f]) [X01 | 00, 01] := �[f (X01) | 00, 01] (08 : �.ObjD (f X8) for 8 = 0, 1)

and so on. What this tells us is that Cat-DAlg is not just an operation sending cate-
gories to sets, but is indeed a presheaf on Cat. Moreover, we can give a contravariant
“morphism part” to Cat-Sect as well: given a section C : Cat-Sect Γ � and a functor
f : Δ⇒ Γ, we can similarly precompose C by f to obtain some C [f] : Cat-Sect Δ �[f].

As our notation in the previous paragraph is beginning to suggest, we have the
beginnings of a CwF here: one whose contexts are categories, substitutions are functors,
types are displayed categories, and terms are sections. Once again, this is not unique to
the GAT Cat, but indeed can be made generically across GATs.

1.3. A Signature Language for GATs 74

Definition 1.3.26. For any GAT G, write �(G) for the CwF whose
• Contexts Γ are G-algebras;
• Substitutitons f : Sub Δ Γ are G-algebra homomorphisms from Δ to Γ;
• Types � : Ty Γ are displayed G-algebras over Γ;
• Terms C : Tm(Γ, �) are sections G-Sect Γ �.

The morphism parts of the Ty and Tm presheaves are defined by pre-composition,
analogously to the above. The remaining components—the terminal object, context
extension, etc.—can be defined by quotient induction-induction on G.

Remark 1.3.27. The original impetus of Ahrens and Lumsdaine [AL19] in defining
displayed categories was to provide an alternative formulation for diagrams (of
categories) of the form

�

�.

The data of a category � plus such a functor � → � is equivalent to a displayed
category over �.

We go the other way around: given a displayed category � over Γ, we want to
define the category (i.e. context in �(Cat)), Γ B �, equipped with (among other
things) the substitution (=functor)

Γ B �

Γ.

p

Γ B � is defined as the ‘total category’ of the displayed category �: its objects are
pairs (W, 0) with W : |Γ | and 0 : ObjD W and morphisms (W0, 00) to (W1, 01) given by a
Γ-morphism W01 from W0 to W1, and a displayed morphism over W01 from 00 to 01:

(Γ B �) [(W0, 00), (W1, 01)] := (W01 : Γ [W0, W1]) ×�[W01 | 00, 01] .

The p functor is then the first projection.

The name “concrete CwF” is a nod to the term “concrete category”, which is used
in category theory to refer to categories whose objects are some set-based structure
(e.g. groups) and whose morphisms are the functions on those sets that appropriately
preserve the structure. A concrete CwF �(G) takes this one step further: not only is
the underlying category a concrete category—the objects/contexts are algebras and the
morphisms/substitutions are structure-preserving functions—the rest of the CwF struc-
ture is similarly “concrete” (types are the appropriate notion of “displayed structure”,
terms are sections of this displayed structure, etc.).

We began by articulating the “central dogma of category theory”: that every notion
of “structure” comes equipped with a notion of “structure-preserving function”, i.e.
constitutes a category. The mathematical practice we expound here, generalized algebra

75 Chapter 1. Type Theory as a Generalized Algebraic Theory

can be seen as a refinement, a sharpening of category theory. Accordingly, we have
our own central dogma of generalized algebra: any notion of “structure” should
not only come with a notion of “structure-preserving function”, but also notions of
“displayed structure” and “section” too. In other words: any notion of structure ought
to arrange into a CwF. It’s not obvious what kinds of “structure” might satisfy this
dictum besides G-algebras,6 and we don’t undertake a characterization of which CwFs
arise as the concrete CwF of some GAT. But this dogma serves to highlight (one key
aspect of) what makes GATs so nice as to deserve their own study.

To conclude, let us note that there are some aspects of these CwFs which KKA
introduce, but which won’t concern us. Namely, they showed that the CwFs that
arise in this way are automatically equipped with extensional identity types, and,
moreover have constant families (equivalently: are democratic CwFs). The latter property
means that each context Δ can be viewed as a type K(Δ) : Ty Γ (for all Γ) such that
substitutions Sub Γ Δ are naturally isomorphic to terms Tm(Γ,K Δ). We won’t explore
this further—we’re more interested in the type- and term-formers which can be modeled
in (modifications of) specific concrete CwFs, rather than the constructs available in
every concrete CwF—but these aspects definitely deserve further consideration in light
of the topics covered in subsequent chapters (in particular, the interaction between the
constant families/democracy and the polarization structure of the concrete CwFs of
categories and preorders studied in chapter 2).

1.4 Fibrancy and the Looking-GlassQuestion
Once again, we’re not content to just fulfill the basic structural components of a CwF:
we want to study interesting type theories, i.e. ones equipped with various type- and
term-forming operations. We noted a moment ago that every concrete CwF interprets
extensional identity types, but, as mentioned earlier, extensional equality comes with a
significant downside: its typechecking is not decidable. Accordingly, much of the focus
of type-theoretic research in recent decades has instead focused on intensional type
theory. What if we want to model intensional equality in concrete CwFs?

Let’s focus on a particular case: the concrete CwF of setoids. Setoids are a natural
candidate for giving a semantics of intensional equality: a setoid is, after all, a set
equipped with a chosen equivalence relation, which is (in general) a coarser notion
of ‘equality’ than metatheoretic (i.e. judgmental, extensional) equality. And indeed it
seems like we can get off to a good start, by interpreting the Id type former and its
constructor, refl.

Example 1.4.1. The type of displayed setoids on a setoid Γ is given by

6Perhaps topological spaces? Topologies seem to be impossible to write down exactly in the GAT
setting (as their definition inherently involves operations on subsets), but we can write down interior
algebras as a GAT. So maybe the definition of displayed interior algebra, section, etc. can be translated to
topologies.

1.4. Fibrancy and the Looking-Glass Question 76

pseudoAgda

record Setoid−DAlg (Γ : Setoid−Alg) : Set where
XD : |Γ| → Set
∼D : {x y : |Γ|} → XD x → {base : x ∼Γ y} → XD y → Prop
rflD : {x : |Γ|} → (xD : XD x) → xD ∼D{base=Γ.rfl x} xD

symD : {x y : |Γ|}{xD : XD x}{yD : XD y}{fwd : x ∼Γ y} →
xD ∼D{base=fwd} yD → yD ∼D{base=Γ.sym fwd} xD

trnsD : {x y z : |Γ|}{xD : XD x}{yD : XD y}{zD : XD z}
{xy : x ∼Γ y}{yz : y ∼Γ z} →
xD ∼D{base=xy} yD → yD ∼D{base=yz} zD →
xD ∼D{base=Γ.trns xy yz} zD

The type of sections of a displayed setoid (-D,∼D) on a setoid Γ = (|Γ |,∼Γ) is
given by

pseudoAgda

record Setoid−Sect (|Γ|,∼Γ) (XD,∼D) : Set where
#1 : (x : |Γ|) → XD x
#2 : {x y : |Γ|} → (base : x ∼Γ y) → (#1 x) ∼D (#1 y)

Definition 1.4.2. The concrete CwF �(Setoid) interprets the Id type-former and
refl constructor of Definition 1.2.18:

pseudoAgda

Id : {Γ : Con}{A : Ty Γ} → (t t’ : Tm(Γ, A)) → Ty Γ
Id(t,t’) : |Γ| → Set
Id(t,t’) x := A._∼D_ {base=Γ.rfl x} (t x) (t’ x)

Id(t,t’)._∼D_ : Id(t,t’) x → {base : x ∼Γ y} → Id(t,t’) y → Prop
xD ∼D yD := ⊤

refl : {Γ : Con}{A : Ty Γ} → (t : Tm(Γ, A)) → Tm(Γ, Id(t,t))
reflₜ : (x : |Γ|) → Id(t,t) x
reflₜ x := A.rflD t(x)

But we run into an issue when trying to interpret the elimination principle for
intensional identity types, the J-rule. To see the issue, it’s simpler to specialize J to the
principle of transport. Transport allows us to turn elements of � [id, C] into elements
of � [id, C ′] by “transporting them along an equality” between C and C ′. Intuitively: if C
and C ′ are equal, then any “property” of C (or any “structure” depending on C) can be

77 Chapter 1. Type Theory as a Generalized Algebraic Theory

transformed into the analogous property/structure over C ′. We saw above that we can
transport over extensional equalities: the oneGAT language had extensional equality,
and we made use of the transport principle there to be able to express heterogeneous
equations in GAT signatures. But transport is also a property of intensional equality:
using the J-rule, we can prove transport.

Definition 1.4.3. In the initial CwF with intentional identity types, we have an
operator

5 : Tm(Γ, Id(C, C ′)) B : Tm(Γ, � [id, C])
tr� 5 B := (J B) [id, C ′, 5] : Tm(Γ, � [id, C ′]) (1.4.4)

The above proof is done in the initial CwF�=-algebra, the syntax of type theory
with intensional identity types. So, now some metatheoretic reasoning: if �(Setoid)
had an appropriate J-rule (making it a CwF�=-algebra), then, since we can prove the
transport law in the syntax CwF�=-algebra, �(Setoid) would have to validate it too. If
�(Setoid) doesn’t support transport (as we’ll show), then this means it cannot be a
CwF�=-algebra.

Let’s unpack what it would mean for �(Setoid) to validate the transport law. Γ is
a setoid, � is a displayed setoid over Γ, and � is a displayed setoid over Γ B �. So �
consists of a family of sets

� : (G : |Γ |) → �(G) → Set

together with a heterogeneous equivalence relation

(_ ∼D _) : �(G0, 00) →
{G01 : G0 ∼Γ G1} → {001 : 00 ∼D{base=G01} 01} →
�(G1, 01) → Prop.

The terms C, C ′ send elements G of Γ to elements of �(G), such that G01 : G0 ∼Γ G1
implies C (G0) ∼D{base=G01} C (G1) and C

′(G0) ∼D{base=G01} C
′(G1) ; the term B sends G to

B (G) : �(G, C (G)) and G01 to

B (G01) : B (G0) ∼D{G01=G01}{001=C (G01)} B (G1);

and the 5 sends G to 5 (G) : C (G) ∼D{base=Γ.rfl G} C
′(G). Does this give us enough to define

a term of type � [id, C ′]?
No.

Proposition 1.4.5. The concrete CwF of setoids �(Setoid) does not validate the trans-
port law Equation 1.4.4.

Proof. Consider the counterexample:
• Γ := {★}, the terminal setoid;
• �(★) := {0, 1}, equipped with 001 : 0 ∼D 1;
• �(★, 0) := {†} and �(★, 1) := ∅;

1.4. Fibrancy and the Looking-Glass Question 78

• C (★) := 0;
• C ′(★) := 1;
• 5 (★) := 001;
• B (★) := †.

If �(Setoid) validated the transport law, then from 5 and B we could obtain

tr 5 B : Tm(Γ, � [id, C ′]) .

But this would send ★ to an element of �(★, C ′(★)) = �(★, 1) = ∅, a contradiction.

Consequently, the identity types defined in Definition 1.4.2 are apparently not worth
much: they cannot support the J-rule, so it’s not clear how to eliminate (that is, do
anything with) them.

A reader familiar with the semantics of dependent type theory might wonder what
the relationship is between our concrete CwF of setoids and the setoid model of Hofmann
and Altenkirch [Hof95a; Alt99], which also has setoids as contexts and setoid morphisms
as substitutions. They are not the same, and we’ve hit upon the key difference: the setoid
model does model intensional equality, including the J-rule and transport. So what
does the setoid model do different semantically that allows it to do what �(Setoid)
apparently cannot?

The difference is fibrancy. If we examine the formulation of the setoid model given
in [ABK+21, p. 7], we see that the types of the setoid model are still displayed setoids,
but with two extra pieces of data.

Definition 1.4.6. A displayed setoid (-D,∼D) over (-,∼) is called fibrant if it comes
equipped with the following data.

pseudoAgda

coe : {x y : X} → (base : x ∼ y) → XD x → XD y
coh : {x y : X} → (base : x ∼ y) → (xD : XD x) → xD ∼D (coe base xD)

These components encode a kind of functoriality of -D over - : if G ∼ ~, then we
can convert—or should we say transport—elements GD : -D G over to elements of -D ~

using coe, and have the result be related to GD in the displayed equivalence relation ∼D.
That ‘fibrancy’ gives rise to transport and corresponds to functoriality is made precise
in the following claims.

Definition 1.4.7. If the displayed setoid � : Ty(Γ B �) is assumed to be fibrant in
the sense of Definition 1.4.6, then the transport law of Definition 1.4.3 is validated.

79 Chapter 1. Type Theory as a Generalized Algebraic Theory

pseudoAgda

tr : {Γ}{A}{B}{t}{t’} → Tm(Γ,Id(t,t’)) → Tm(Γ,B[id,t]) → Tm(Γ,B[id,t’])
(tr f s) : (x : |Γ|) → B(x, t’ x)
(tr f s) := coe {x=(x,t(x))} {y=(x,t’(x))} (Γ.rfl x, f x) s(x)

(tr f s) : (x₀₁ : x₀ ∼Γ x₁) → (tr f s) x₀ ∼D{G01=G01}{001=5 (G01)} (tr f s) x₁

(tr f s) x₀₁ :=
trnsD

(symD (coh (Γ.rfl x₀, f x₀) (x₀,t(x₀))))
(trnsD (s x₀₁) (coh (Γ.rfl x₁, f x₁) (x₁,t(x₁))))

Proposition 1.4.8. The type of fibrant displayed setoids on a setoid Γ is equivalent to
the type of functors from Γ (regarded as a category with subsingleton hom-sets) into the
category Setoid.

Proof. Given� : Γ ⇒ Setoid, the corresponding family of sets-D : |Γ | → Set is given
by -D(G) := |�(G) |. The heterogeneous equivalence relation (over base : G ∼Γ ~) is
given by

GD ∼D ~D := (� base GD) ∼�(~) ~D.
Given a fibrant displayed setoid (-D,∼D, coe, coh), the setoid �(G) is defined as

the set -D(G) with relation

0 ∼�(G) 0′ := 0 ∼D{base=Γ.rfl G} 0
′.

Given base : G ∼Γ ~, the setoid morphism �(G) → �(~) is defined by sending
0 : |�(G) | to coe base 0 : |�(~) |. This preserves the equivalence relation: given
? : 0 ∼�(G) 0′, i.e. ? : 0 ∼D{base=Γ.rfl G} 0

′, we have

symD(coh base 0) : coe base 0 ∼D{base=Γ.sym base} 0

? : 0 ∼D{base=Γ.rfl G} 0
′

coh base 0′ : 0′ ∼D{base=base} coe base 0
′

So, using trnsD to concatenate these, we have a relation between coe base 0 and
coe base 0′ in the setoid �(~), as desired.

Without fibrancy, we can still view a displayed setoid over Γ as a family of setoids
{�(W)}W : Γ as spelled out in this proof; the fibrancy only comes in when we want to
obtain a setoid morphism �(G) → �(~) from G ∼ ~.

For our purposes, the explicitly functorial formulation—that a fibrant displayed
setoid over Γ is a functor Γ ⇒ Setoid—will be more convenient; we just have to translate
the notion of ‘term’ along this equivalence: see Figure 1.10. We therefore have the
setoid model.

1.4. Fibrancy and the Looking-Glass Question 80

pseudoAgda

record Tm (Γ : Con) (A : Ty Γ) : Set where
#1 : (x : |Γ|) → |A x|
#2 : (x₀₁ : x₀ ∼Γ x₁) → A x₀₁ (#1 x₀) ∼A(x1) (#1 x₁)

Figure 1.10: Explicit definition of the terms in the setoid model.

Definition 1.4.9. The setoid model of type theory—denoted �
fib(Setoid)—is the

concrete CwF of setoids, �(Setoid), but with fibrant types

Ty Γ := Γ ⇒ Setoid.

There is evidently a ‘forgetful’ CwF morphism �
fib(Setoid) → �(Setoid) which

forgets the fibrancy data (and which is the identity on contexts, substitutions, and
terms). However, this morphism is neither injective (the setoid model is not a sub-
CwF of �(Setoid): the fibrancy data—coe in particular—is data, not a property) nor
surjective (for instance, the counterexample displayed setoid � constructed for Proposi-
tion 1.4.5 cannot possibly be made fibrant). So �

fib(Setoid) is both a restriction and
an enrichment of �(Setoid).

As mentioned in the introduction, a key motivating example for us will be the
groupoidmodel of Hofmann and Streicher [HS95]. We could repeat the above analysis to
show that the concrete CwF of groupoids,�(Grpd), doesn’t support intensional identity
types; after all, setoids can be viewed as groupoids whose hom-sets are propositions,
so Proposition 1.4.5 basically needs no modification. As with the setoid model, the
groupoid model arises as the fibrant version of the concrete CwF of groupoids, with only
slightly more elaborate fibrancy data: we now need to add coherence equations to coe
and coh, which were automatic in the setoid case because all elements of a proposition
are equal. The addition of fibrancy makes it possible to interpret intensional identity
types.

Definition 1.4.10. A displayed groupoid � over Γ is called fibrant if it comes
equipped with the following data.

pseudoAgda

coe : {W ₀ W₁ : |Γ|} → (W ₀₁ : Γ[W ₀,W₁]) → A W ₀ → A W₁
coh : {W ₀}{W₁} → (W ₀₁ : Γ[W ₀,W₁]) → (a₀ : A W ₀) → A[W ₀₁ | a₀ , coe W ₀₁ a₀]
coe_id : coe idW a = a
coe◦ : coe (W₁₂ ◦ W ₀₁) a₀ = coe W₁₂ (coe W ₀₁ a₀)
coh_id : coh idW a = idD W a
coh◦ : coh (W₁₂ ◦ W ₀₁) a₀ = coh W₁₂ (coe W ₀₁ a₀) ◦D coh W ₀₁ a₀

81 Chapter 1. Type Theory as a Generalized Algebraic Theory

pseudoAgda

record Tm (Γ : Con) (A : Ty Γ) : Set where
#1 : (W : |Γ|) → |A W |
#2 : (W ₀₁ : Γ[W ₀ , W₁]) → (A W₁)[A W ₀₁ (#1 W ₀), (#1 W₁)]
#3 : #2 idW = id
#4 : #2 (W₁₂ ◦ W ₀₁) = (#2 W₁₂) ◦ A W₁₂ (#2 W ₀₁)

Figure 1.11: Explicit definition of the terms in the groupoid model.

Proposition 1.4.11. The type of fibrant displayed groupoids on a groupoid Γ is equiva-
lent to the type of functors from Γ into the category Grpd.

Definition 1.4.12. The groupoid model of type theory—denoted �
fib(Grpd)—is

the concrete CwF of setoids, �(Grpd), but with fibrant types

Ty Γ := Γ ⇒ Grpd.

Definition 1.4.13. The groupoid model semantics of identity types are given in
Figure 1.12.

A critical difference between the setoid and groupoid models is their validation
(or refutation) of the uniqueness of identity proofs principle (UIP). UIP says that
witnesses of propositional equality are themselves unique (up to propositional equality):
for any two terms 5 5 ′ : Tm(Γ, Id(C, C ′)), there must exist some term

UIP(5 , 5 ′) : Tm(Γ, Id(5 , 5 ′)) .

In other words, UIP asserts that identity is a proposition—the identity types do not
have their own elaborate internal structure. The setoid model does obey UIP: roughly,
since identity types are interpreted using hom-sets (as in Figure 1.12) and the hom-sets
of setoids are subsingletons, there’s not “room” to construct distinct, parallel identity
proofs. On the other hand, the groupoid model was devised specifically to refute UIP,
to prove that UIP was independent of the laws of Martin-Löf Type Theory. So, in the
type theory of the groupoid model, there can be identity types Id(C, C ′) between which
have multiple terms that are not themselves identical. Note, however, that the groupoid
model satisfies “UIP, one level up”: the identity types between terms of identity types
are propositions.

Now combine this with observation with two fundamental proofs conducted in the
syntax of type theory with intensional identity types: symmetry and transitivity of
identity.

Definition 1.4.14. In the initial CwF with intensional identity types, we have an
operator

1.4. Fibrancy and the Looking-Glass Question 82

pseudoAgda

Id : {Γ : Con}{A : Ty Γ} → Tm(Γ, A) → Tm(Γ, A) → Ty Γ

Id(t,t’) : |Γ| → Grpd
| Id(t,t’) W | := (A W) [t W , t’ W]
(Id(t,t’) W) [i , j] := (i = j)

Id(t,t’) : (W ₀₁ : Γ [W ₀ , W₁]) → (Id(t,t’) W ₀)⇒ (Id(t,t’) W₁)
Id(t,t’) W ₀₁ f₀ := t’(W ₀₁) ◦ A W ₀₁ f₀ ◦ t(W ₀₁)−¹

refl : {Γ : Con}{A : Ty Γ} → (t : Tm(Γ, A)) → Tm(Γ, Id(t,t))
reflₜ : (W : |Γ|) → |Id(t,t) W |
reflₜ W := idt(W)

J : (t : Tm(Γ, A))
→ (M : Ty (Γ ⊲ A ⊲ Id(t[p], v₀)))
→ Tm(Γ, M[id , t , reflₜ])
→ Tm(Γ ⊲ A ⊲ Id(t[p], v₀), M)

(Jt,M m) : (W : |Γ|) → (a : |A W |) → (x : (A W) [t W , a]) → | M(W , a, x) |
(Jt,M m) W a x = M (idW , x) (m W) −− x = x ◦ A idW idtW ◦ t idW

(Jt,M m) : (W ₀₁ : Γ [W ₀,W₁])
→ (a₀₁ : AW₁ [A W ₀₁ a₀, a₁])
→ M(W₁, a₁, a₀₁ ◦ A W ₀₁ x₀ ◦ t(W ₀₁)−¹)[

M(W ₀₁,a₀₁) ((Jt,M m) W ₀ a₀ x₀),
((Jt,M m) W₁ a₁ (a₀₁ ◦ A W ₀₁ x₀ ◦ t(W ₀₁)−¹))

]
(Jt,M m) W ₀₁ a₀₁ = M (idW1 , a₀₁ ◦ A W ₀₁ x₀ ◦ t(W ₀₁)−¹) (m W ₀₁)

Figure 1.12: Explicit definition of identity types in the groupoid model.

83 Chapter 1. Type Theory as a Generalized Algebraic Theory

5 : Tm(Γ, Id(C, C ′))
5 −1 := (J

C,Id (v0,C) reflC) [id, C
′, 5] : Tm(Γ, Id(C ′, C)) (1.4.15)

Definition 1.4.16. In the initial CwF with intensional identity types, we have an
operator

5 : Tm(Γ, Id(C, C ′)) 6 : Tm(Γ, Id(C ′, C ′′))
5 · 6 := (J

C ′,Id (C,v0) 5) [id, C
′′, 6] : Tm(Γ, Id(C, C ′′)) (1.4.17)

Since both the groupoid and setoid models are CwFs with intensional identity types,
both of these constructions can be done in either model too. Let’s think about the setoid
model first. In the setoid model, the type Id(C, C ′) is a proposition: by UIP, Id(C, C ′) can
have at most one inhabitant (up to propositional equality). Thus we can think of Id
as a propositional relation between the terms of a given type: for every pair of terms
C, C ′, obtain a proposition Id(C, C ′). Moreover, by the reflC term, Definition 1.4.14, and
Definition 1.4.16, it is an equivalence relation, i.e. a setoid. We thus say that the types
of the setoid model are synthetic setoids: every type � in the setoid model has the
structure of a setoid: the elements of the setoid are the terms of � and the ∼ relation
is the identity relation Id. “Synthetic” here means that we do not have to prove that a
given type � is a setoid in this sense; if we can write down a type in the type theory
of the setoid model, then it automatically comes equipped with Id, which is already
proved reflexive, symmetric, and transitive.7

The same situation unfolds with the groupoid model. In the groupoid model, iden-
tity types Id(C, C ′) are not propositions but sets: there can be 5 5 ′ : Tm(Γ, Id(C, C ′))
where the identity type Id(5 , 5 ′) is empty, i.e. false; but, if there is an inhabitant
q : Tm(Γ, Id(5 , 5 ′)), then q must be unique (for any other q′ : Tm(Γ, Id(5 , 5 ′)), obtain
an element of Id(q, q′)). So Id is not a binary relation on �, a family of propositions
indexed over pairs of terms C, C ′ of type �, but a binary family of sets. In view of this,
the refl term, Definition 1.4.14, and Definition 1.4.16 say that the types of the groupoid
model are synthetic groupoids: the terms are the objects and Id(C, C ′) is the hom-set
of the groupoid. The term reflC of type Id(C, C) is the identity morphism, the term 5 · 6
defined in Definition 1.4.16 is the composition of 5 and 6, and 5 −1 defined in Defini-
tion 1.4.14 is the inverse operation. The category laws (the unit laws and associativity)
and the groupoid laws

Id(5 · 5 −1, reflC) and Id(5 −1 · 5 , reflC ′)

can be proved using the J-rule (again we emphasize that we prove this once-and-for-all,
so any type we can write down is automatically equipped with the groupoid structure).

So the types of the setoid model are synthetic setoids, and the types of the groupoid
model are synthetic groupoids. How curious! In both these cases, the semantic structure
(the equivalence relation and the groupoid structure, respectively) gets reflected into
the syntax (in the form of the Id-types), such that the type theory provides a synthetic

7To define an “analytic” setoid, i.e. a setoid in the usual sense, we must explicitly define its relation
and prove reflexivity, symmetry, and transitivity by hand. If we want to define another, we must do all
that once again.

1.4. Fibrancy and the Looking-Glass Question 84

theory of the original semantic structure. What isn’t clear is whether this is something
highly-specific to groupoids and setoids, or if this can be done more generally. We state
the following question.8

Question (Looking-Glass). How is the structure of a GAT G reflected in the type
theory of (a fibrant version of) the concrete CwF �(G) of (displayed) G-algebras?

It’s not obvious which GATs would support such a thing. Can we model a language
of synthetic N-algebras in the category of N-algebras? A synthetic theory of monoids
in Mon? We don’t know. However, we can make some observations. First, it seems
that fibrancy plays a significant role; after all, it is not in the concrete CwFs �(Setoid)
and �(Grpd) that we were able to obtain these synthetic theories, but in their fibrant
versions, the setoid and groupoid models.9 Accordingly, the answer to the Looking-
Glass Question, to the extent that it exists, is likely tied up with the answer to the
following question.

Question (Fibrancy). Given a GAT G, what is the appropriate notion of ‘fibrancy’ for
the types of �(G)?

For groupoids specifically, we have a very good benchmark for what ‘fibrancy’
ought to mean: recalling Proposition 1.4.11, we see that a fibrant displayed groupoid
over Γ is just a functor from Γ to the groupoid of groupoids. We stated Proposition 1.4.11
referring to Grpd as a category, but all the functors �(W01) : �(W0) ⇒ �(W1) picked
out in this way are isomorphisms, so really we could understand this as going into
the core groupoid of Grpd. We’ll see the same for categories: a fibrant displayed
category on a category Γ is just a functor Γ ⇒ Cat. This is all to say: there’s some
kind of cosmological aspect to the Fibrancy Question: the only GATs G for which we
can satisfactorily answer the Fibrancy Question are those ones where the category of
G-algebras can itself be understood as a G-algebra.10 Perhaps this limits the scope of
G in the Fibrancy Question to just category-like (or quiver-like) structures; or perhaps
something more clever can be done. Further consideration is certainly required.

Moreover, our use of identity types to achieve the synthetic structure seems to be an
artifact of the fact that the synthetic structure we’re trying to capture involves binary
relations/families of sets. If, for instance, some version of the concrete CwF of monoids,
�(Mon), were to provide semantics for a synthetic monoid theory, the appropriate
type-theoretic construct wouldn’t be identity types. So an aspect of this question is
determining what kind of type theory is even capable of writing down a synthetic
theory of G-algebras, something which is obviously quite specific to G. We frame this

8Since there’s talk of “reflecting” the semantics into the syntax, we take some literary-poetic license
and call this the “looking glass question.”

9Perhaps a synthetic theory of setoids (resp. groupoids) can be modeled in the raw concrete CwF of
setoids (resp. groupoids), where we put in the witnesses of symmetry and transitivity (and associativity,
unit, etc.) by hand instead of proven in the syntax. But this seems much less convenient than the fibrant
versions, where we are able to reason with the powerful J-rule.

10Setoids, and later preorders, won’t exactly fit this mold: in saying “a fibrant setoid over Γ is just a
functor Γ ⇒ Setoid,” we’re not treating the category Setoid as a setoid, but rather treating the setoid Γ
as a category.

85 Chapter 1. Type Theory as a Generalized Algebraic Theory

issue as the following question.

Question (Synthesis). Given a GAT G with fibrant-concrete CwF �
fib(G), what

extension GCwF of CwF is there such that (a) �fib(G) : GCwF-Alg; and (b) the
syntax model GℂwF : GCwF-Alg provides a synthetic theory of G-algebras?

The logical extreme of these considerations—which we don’t pursue here—is a
synthetic theory of CwFs modeled in the CwF of CwFs. The GAT CwF seems to
clear the Fibrancy Question comfortably: like categories and groupoids, CwFs have
the appropriate ‘cosmological’ character, namely that the category of CwFs has the
structure of a CwF, given by the concrete CwF of CwFs, �(CwF). So, for a given CwF
Γ, it makes sense to define “fibrant displayed CwFs” as those which organize into a
CwF-morphism Γ → �(CwF); thus we have arrived at �fib(CwF). What remains
to figure out, then, is what type- and term-formers can we add to the syntax of type
theory which pick out the sense in which the types of �fib(CwF) are synthetic CwFs.
We leave this investigation for whichever brave soul has the patience to carry it out.

The purpose of the present work is to answer the Synthesis Question for Cat, the
GAT of categories. The appropriate notion of ‘fibrant displayed category’ is well-known
(Grothendieck opfibrations), and indeed the category model, �fib(Cat), has already
appeared in [Nor19].11 Themain part of our task, then, will be to decide which category-
model constructions ought to be abstracted and added to the syntax of type theory, in
order to arrive at a type theory whose types are synthetic categories.

11Though not referred to there as ‘the category model’.

Chapter 2

The Polarity Calculus

“Now, if you’ll only attend, Kitty, and not talk so much, I’ll tell you all my ideas
about Looking-glass House. First, there’s the room you can see through the glass—
that’s just the same as our drawing room, only the things go the other way… the
books are something like our books, only the words go the wrong way…Oh,
Kitty! how nice it would be if we could only get through into Looking-glass
House! I’m sure it’s got, oh! such beautiful things in it! Let’s pretend there’s a
way of getting through into it, somehow, Kitty.”

Lewis Carroll, Through the Looking-Glass

“What indeed can be more similar to, and in all parts more equal to, my hand or
my ear than its image in the mirror? And yet I cannot put such a hand as is seen
in the mirror in the place of its original; for if the one was a right hand, then the
other in the mirror is a left, and the image of the right ear is a left one, which can
never take the place of the former.”

Immanuel Kant, Prolegomena to Any Future Metaphysics

Category theory has been concerned with an abstract mathematical treatment of
duality, quite literally from its very first sentence [EM45, p. 231]. No wonder, then,
that our investigation into category theory’s self-reflection in �(Cat) would at some
point require a treatment of opposite categories. What is interesting, however, is the
flipped order of logical priority: in standard (analytic) treatments of category theory,
we must (of course) first define “category” before speaking of the “opposite category”
operation. In the present theory, however, it is otherwise: we must first explore the
duality structure of our types before we can investigate them as synthetic categories. In
other words, an understanding of the type theory of the category model as a polarized
type theory is prerequisite to a study of it as a directed type theory.

There is a semantic reason for this, as well as a syntactic one. The semantic reason is
that the interpretation of identity types in the groupoid model makes indispensable use
of symmetry: given two terms C and C ′ of the same type �, the semantics of the identity
type Id(C, C ′) makes essential use of the fact that � is a functor valued in groupoids (see

87 Chapter 2. The Polarity Calculus

Definition 1.4.13). If we instead wish to work in the category model—whose types �
are functors valued in categories—and interpret the directed equality type Hom(C, C ′),
then, it turns out, we need the domain term C to be negative, i.e. a term of the opposite
type �−. Thus we are required to have a theory of type negation ready-to-hand before
we can even form hom-types, let alone work with them.

Even if we were able to semantically validate an unpolarized version of Hom-
formation (or if we didn’t care about semantics), the modal typing discipline of type
polarities plays a critical role in regulating directed type theory. This is because our
chief tool for reasoning with directed equality types will be the directed J-rule, also
known as directed path induction. In undirected type theory (such as the type theory of
the groupoid model), we can use the J-rule to easily prove the symmetry of identity
(Definition 1.4.14)—from a term of type Id(C, C ′), obtain a term of type Id(C ′, C)—hence
types are synthetic groupoids. We don’t want our directed J-rule to be capable of this,
lest our directed type theory “collapse” into undirected type theory. It’s imperative,
then, that some syntactic guard be put in place to prevent the J-rule from proving
symmetry. The requirement that C be negative and C ′ positive in order for Hom(C, C ′) to
be well-formed achieves this: given 5 of type Hom(C, C ′), we certainly cannot construct
5 −1 of type Hom(C ′, C)—the latter type is not well-formed! We will have to weaken this
system of polarities somewhat to make it useful (e.g. to type the reflexivity term), but
the category model will allow us to ensure symmetry is independent of our directed
type theory, and thus that it is indeed a directed type theory.

The preorder and category models of type theory will, like the setoid and groupoid
models, be defined as strictly fibrant concrete CwFs. This means that phenomena
of interest—including polarity—will manifest both “deeply” (at the level of contexts
and substitutions) and “shallowly” (at the level of types and terms). So not only will
our notion of “polarized CwF” provide for the negation of types, but of contexts and
substitutions as well. The “deeply-polarized” portion will make it possible to define
polarized function types, terms of which will serve as the functors in our eventual
synthetic category theory. section 2.3 will detail the modifications to the polarity
calculus—namely the introduction of neutral contexts and types—which is needed to
make these function types viable.

2.1 Polarity Structure of the Preorder and Category
Models

Let’s begin with the preorder model. As with the setoid model, we will obtain the
preorder model �fib(PreOrd) as a restriction of the concrete CwF of preorders and
displayed preorders. Once again, the restriction is just in the types: in order to obtain a
model with a well-behaved notion of “transport”, it is necessary to restrict the types to
“strictly fibrant”. This can be done by attaching additional components to the definition
of ‘displayed preorder’—which we spell out in Figure 2.1—but for the present chapter it
will be more convenient to use the equivalent definition: preorder-valued functors.

2.1. Polarity Structure of the Preorder and Category Models 88

pseudoAgda

coe : {x y : X} → XD x → {base : x ≤ y} → XD y
coh : {x y : X}{base : x ≤ y} → (xD : XD x) → xD ≤D{base=base} (coe xD)
cart : {x y z : X}{base : x ≤ y}{extn : y ≤ z} → (xD : XD x) → (zD : XD z) →

{target : xD ≤D{base=trns base extn} zD} →
(coe {base=base} xD) ≤D{base=extn} zD

Figure 2.1: Additional ‘fibrancy data’ on a displayed preorder (compare
with Definition 1.4.6)

Definition 2.1.1. The preorder model of type theory—denoted �
fib(PreOrd)—is

the concrete CwF of preorders �(PreOrd), restricted to strictly fibrant types

Ty Γ := Γ ⇒ PreOrd.

Saying� : Γ ⇒ PreOrd for some preorder Γ = (-, ≤) means that�(G) is a preorder
for each element G : - , and that �(G~) is a monotone map �(G) to �(~) for every
G~ : G ≤ ~. As before, we can view every such functor as a displayed preorder by way
of (a version of) the Grothendieck construction:

GD ≤D{base=G~} ~
D := � G~ GD ≤ ~D

where the relation on the right-hand side is that of the preorder �(~). Thus it makes
sense to speak of “sections” of such a functor �, the terms of type � in the preorder
model.

Definition 2.1.2. Given a preorder Γ and a functor � : Γ ⇒ PreOrd (i.e. � : Ty Γ in
the preorder model), a section C of � consists of two components

C#1 : (G : Γ) → �#1(G)
C#2 : (G~ : G ≤ ~) → � G~ (C#1 G) ≤ C#1(~).

The intriguing thing about strictly fibrant concrete CwFs (such as the preorder
model) is that operations on contexts become operations on types: since types in Γ are
functors Γ ⇒ PreOrd, any endofunctor � : PreOrd⇒ PreOrd induces an action on
types, defined by post-composition by � . The endofunctor we’re interested in here is
the opposite operation.

Definition 2.1.3. The opposite of a preorder Γ = (-, ≤) is the preorder Γop := (-, ≥
), where

G ≥ ~ := ~ ≤ G .
Given a preordermorphism 5 : Δ→ Γ, write 5 op for the same underlying function

5 , but regarded as a preorder morphism Δop → Γop. This makes (_)op into an
endofunctor on PreOrd.

89 Chapter 2. The Polarity Calculus

Definition 2.1.4. The object- and morphism-parts of the endofunctor (_)op on
PreOrd give semantics for the operations in the type theory of the preorder model

Γ : Con
Γ− : Con

f : Sub Δ Γ
f : Sub (Δ−) (Γ−)

respectively.
It also gives semantics for an operation on types:

� : Ty Γ

�− : Ty Γ

defined by post-composition with (_)op:

Γ PreOrd PreOrd.
�

�−

(_)op (2.1.5)

In summary, the (_)op endofunctor induces three ‘negation’ operations: one on
contexts, one on substitutions, and one on types. Let us make some observations about
these operations. First, notice that there is not a negation operation on terms. There’s
no obvious place to insert the (_)op endofunctor into Definition 2.1.2 to get it to act on
terms. Indeed, we can easily come up with examples of types � which are inhabited
(i.e. � admits a term) but whose opposite �− is uninhabited—preorders can be quite
different than their opposites! This disconnect between the terms of � and �− will
ultimately pose issues for us—especially if we want types to be synthetic categories
and �− to represent the opposite category of �—but we’ll address that point later.

Secondly, let us emphasize that the type-negation operation happens within a given
context: if � is a type in context Γ, then �− is a type in that same context Γ, not its
opposite, Γ−. Fundamentally, this boils down to the fact that (_)op is covariant (for
f : Sub Δ Γ, its negation f− is in Sub Δ− Γ−, not Sub Γ− Δ−), so the post-composition
depicted in Equation 2.1.5 doesn’t involve negating Γ at all. As a consequence, the (_)op
endofunctor on contexts is not a CwF-endomorphism on the preorder model.1

Next, we note the following properties.

Proposition 2.1.6. The type-negation operation is a natural transformation from
Ty to itself: for all contexts Δ, Γ, every type � : Ty Γ, and every f : Sub Δ Γ,

�[f]− = (�−) [f] . (2.1.7)

Proposition 2.1.8. The negation operations are all involutions.

Γ : Con
(Γ−)− = Γ

f : Sub Δ Γ
(f−)− = f

� : Ty Γ

(�−)− = � (2.1.9)

With this, we can begin to speak of the negation operations on the preorder
1In the next section, we will find a way to understand negation as a CwF (iso)morphism, but between

the CwF structure and an auxiliary CwF we’ll define.

2.1. Polarity Structure of the Preorder and Category Models 90

pseudoAgda

coe : {W ₀ W₁ : |Γ|} → (W ₀₁ : Γ[W ₀,W₁]) → A W ₀ → A W₁
coh : {W ₀}{W₁} → (W ₀₁ : Γ[W ₀,W₁]) → (a₀ : A W ₀) → A[W ₀₁ | a₀ , coe(W ₀₁,a₀)]
cart : {W ₀}{W₁}{W ₂}{a₀ : A W ₀}{a₂ : A W ₂} →

(W ₀₁ : Γ[W ₀,W₁]) → (W₁₂ : Γ[W₁,W ₂]) → (a₀₂ : A[W₁₂ ◦ W ₀₁ | a₀ , a₂]) →
A[W₁₂ | coe(W ₀₁,a₀) , a₂]

coe_id : coe idW a = a
coe◦ : coe (W₁₂ ◦ W ₀₁) a₀ = coe W₁₂ (coe W ₀₁ a₀)
coh_id : coh idW a = idD W a
coh◦ : coh (W₁₂ ◦ W ₀₁) a₀ = coh W₁₂ (coe W ₀₁ a₀) ◦D coh W ₀₁ a₀
cartV : {W ₀}{W₁}{W ₂}{a₀}{a₂}{W ₀₁}{W₁₂} → (a₀₂ : A[W₁₂ ◦ W ₀₁ | a₀ , a₂]) →

cart(W ₀₁,W₁₂,a₀₂) ◦D coh(a₀,W ₀₁) = a₀₂
cart[: {W ₀}{W₁}{W ₂}{a₀}{a₂}{W ₀₁}{W₁₂} → (a₁₂ : A[W₁₂ | coe(a₀,W ₀₁) , a₂]) →

cart(W ₀₁, W₁₂, a₁₂ ◦D coh(a₀,W ₀₁)) = a₁₂

Figure 2.2: Additional ‘fibrancy data’ on a displayed category (compare
with Definition 1.4.10)

model as a polarity calculus. As we’ll see more precisely in the next section, a
CwF equipped with involutive negation operations arranges into a type-theoretic
‘dipole’: two equivalent-and-opposite type theories—one “positive” and the other “neg-
ative”—intimately bound together. This is the essence of polarized type theory as
practiced here.

Though we will occasionally refer to the preorder model as an example,2 ultimately
our primary example is instead the category model, which is polarized in exactly the
same way.

Definition 2.1.10 (Category Model). The categorymodel of type theory—denoted
�

fib(Cat)—is the concrete CwF of categories �(Cat), restricted to strictly fibrant
types

Ty Γ := Γ ⇒ Cat.

Definition 2.1.11. The opposite of a category Γ is the category Γop, whose objects
are the same but with morphisms ‘turned around’

Γop [W0, W1] := Γ [W1, W0] .

The identity morphisms and composition in Γop are inherited from Γ.
(_)op extends into an endofunctor on Cat: any functor f : Δ⇒ Γ can be viewed

2And it deserves more extensive treatment, analogous to contemporary study of the setoid model,
e.g. [ABK+21].

91 Chapter 2. The Polarity Calculus

as a functor fop : Δop ⇒ Γop:

X10 : Δ
op [X0, X1]

X10 : Δ [X1, X0]
f (X10) : Γ [f (X1), f (X0)]
f (X10) : Γop [f (X0), f (X1)] .

Definition 2.1.12. The object- and morphism-parts of the endofunctor (_)op on Cat
give semantics for the operations in the type theory of the category model

Γ : Con
Γ− : Con

f : Sub Δ Γ
f : Sub (Δ−) (Γ−)

respectively.
It also gives semantics for an operation on types:

� : Ty Γ

�− : Ty Γ

defined by post-composition with (_)op : Cat⇒ Cat.

Functors Γ ⇒ Cat correspond to split opfibrations, displayed categories equipped
with the appropriate ‘fibrancy data’ (Figure 2.2). The fibrancy data required is a combina-
tion of the fibrancy data needed for the groupoid model and for the preorder model—the
category model is proof-relevant like the former, and asymmetric like the latter.

It will be helpful to spell out explicitly the terms of the category model, and investi-
gate how they interact with the negation operations. As with the setoid, groupoid, and
preorder models, the terms of type � in the category model are just the sections of �,
viewed as a displayed category over its context.

Definition 2.1.13. Given a category Γ and a functor � : Γ ⇒ Cat (i.e. � : Ty Γ in
the category model), a section C of � consists of two components

C#1 : (W : Γ) → |� W |
C#2 : (W01 : Γ [W0, W1]) → (� W1) [� W01 (C#1 W0), C#1(W1)]

such that

C#2 idW = idC#1 (W) (2.1.14)
C#2(W12 ◦ W01) = (� W01 (C#2 W12)) ◦ C#2(W01). (2.1.15)

So let’s consider: what’s the difference between
• a term of type � (where � : Ty Γ),
• a term of type �− (where � : Ty Γ), and
• a term of type � (where � : Ty Γ−)?

As we’ll repeatedly find, polarity in the category model always manifests in the mor-
phism part of types and terms—it is only in the morphisms, after all, that a category

2.1. Polarity Structure of the Preorder and Category Models 92

differs from its opposite. Accordingly, types in Γ and Γ− have the same kind of object
part—an operation sending objects W to categories �(W)—and likewise for terms: regard-
less of whether C : Tm(Γ, �), C : Tm(Γ, �−), or C : Tm(Γ−, �), its object part sends W to
an object of �(W). However, the morphism parts are quite different: for W01 : Γ [W0, W1],
the three different morphism parts are as follows.

pseudoAgda

−− t : Tm(Γ, A) where A : Ty Γ
t W ₀₁ : (A W₁) [A W ₀₁ (t W ₀), t W₁]
−− t : Tm(Γ, A−) where A : Ty Γ
t W ₀₁ : (A W₁) [t W₁, A W ₀₁ (t W ₀)]
−− t : Tm(Γ−, A) where A : Ty Γ−

t W ₀₁ : (A W ₀) [A W ₀₁ (t W₁), t W ₀]

So the difference between terms of � and �− is relatively shallow: both morphism
parts send W01 to a morphism in �(W1) between � W01 (C W0) and C (W1), but in different
directions. Negating the context, however, is a deeper difference: note that the last
of these three yields a morphism in �(W0)—since � is now contravariant, the functor
�(W01) sends objects of �(W1) to objects of �(W0) rather than the other way around, so
we can only form a morphism between C (W0) and C (W1) by transporting the latter over
to the category where the former resides,�(W0). Of course, we could employ both kinds
of negation, and consider terms C : Tm(Γ−, �−) for some � : Ty Γ−. Then C (W01) would
be of shape (� W0) [C (W0), � W01 (C W1)]. This form matches that of the Grothendieck
construction for contravariant (pseudo)functors, the same way the morphism part for
Tm(Γ, �) matches the Grothendieck construction for covariant (pseudo)functors; no
wonder, then, that Tm((_)−, (_)−) will serve as the negative counterpart to Tm in the
constructions of the next section.

Henceforth, we’ll use the terms “shallow” and “deep” to name the two levels of
reversal demonstrated in the previous paragraph: the category and preorder models are
deeply-polarized because they’re equipped with negation operators on contexts and
substitutions, and shallowly-polarized because they admit a type-negation operation.
It’s worth noting that these notions are separable: we could have deep polarity without
shallow, or vice versa. For instance, note that the raw concrete CwFs �(PreOrd) and
�(Cat) still have deep polarity—we still have the endofunctor on algebras—but not
shallow: the type-negation operation is only definable in the preorder and category
models because of their fibrancy requirement, so we can’t define type-negation on
these models. On the other hand, we could follow North [Nor19] and only study the
‘shallow’ polarities, not giving ourselves syntax for negating a context or substitution.
But for our purposes, it is most natural (and necessary) to include both kinds of polarity:
as discussed above, the shallow polarity is needed to properly regulate directed path
induction, whereas the deep polarity is needed to make dependent functions work in
polarized models (as we’ll see in the next section).

We now turn our attention to the task of abstracting the notion ‘polarization struc-
ture’ exhibited by the preorder and category models into a general-purpose mathemati-
cal concept: polarized CwFs (PCwFs). We do so for two reasons. Of course, abstraction

93 Chapter 2. The Polarity Calculus

is generally good mathematical hygiene—freeing one’s constructions from the pecu-
liarities of a particular example tends to increase their modularity, applicability, and
overall elegance. However, this isn’t too big a motivation for us: unlike, say, the concept
of a ‘group’,3 we don’t anticipate there being a incredibly diverse array of instances
of ‘PCwFs’—for the purposes of the present work, “PCwF” will be little more than
shorthand for “the preorder or category model”. Our real motivation for introducing
‘PCwF’ as an abstract concept is specific to the practice of generalized algebra: if it can
be expressed as a GAT, then it admits an initial algebra. That is, since our concept of a
‘PCwF’ will be given as a GAT (namely an extension of CwF), it will admit a syntax
model. We actually won’t be too interested in the syntax of polarized type theory itself,
but this will be the first step towards our ultimate goal: the GAT of directed CwFs and
its syntax model, directed type theory.

With all this in mind, we state our definition of polarized CwF.

Definition 2.1.16. A polarized category with families (PCwF) consists of a CwF
(Con, Sub, •, Ty, Tm,B+, . . .)a equipped with the following operations.

• An endofunctor (_)− : Con ⇒ Con such that (Γ−)− = Γ and (f−)− = f for all
Γ and f , and such that •− = •.

• A natural transformation (_)− : Ty → Ty such that (�−)− = � for all �.
We’ll refer to this extra structure as a polarization on the underlying CwF.

These are the algebras for the GAT PCwF.
aNote that we start to denote the context extension operator as B+ instead of just B. This is in

anticipation of the constructions of the next section.

On first glance, this definition may seem to be missing something crucial. In the
preorder and category models, the type-negation operation arose by the fiberwise appli-
cation of the context-negation endofunctor, so there was some fundamental connection
between the deep and shallow polarities. But we cannot say “type negation is fiberwise
context-negation” with regards to an arbitrary CwF: performing fiberwise application
requires that our CwF is not only a concrete CwF, but one whose types are appropriately
fibrant. So there’s nothing in the definition of PCwF which requires these to be related.

However, we embrace this as a feature: we wish to ensure that the deep and shallow
polarities are appropriately independent, e.g. that one can employ type-negation
without involving context-negation. This is in contrast to the theory of Licata and
Harper [LH11], which permits context- and substitution-negation operations, but only
a negative context extension operation, not type-negation. So, in that theory, type-
negation, to the extent it’s possible, remains inextricably bound up in the deep polarity
calculus. As we introduce negative context extension in the next section, we’ll see
that it incorporates type-negation, meaning that the Licata-Harper theory involves
type-negation without making it accessible in the syntax. Though this doesn’t pose
a problem within the context of that theory, within our approach it would force all
the synthetic functors in our synthetic category theory to be contravariant—quite an
undesirable outcome. Thus we’ll uphold the independence of shallow polarity, and not
seek to require that it arises from the deep polarity endofunctor.

3Or even ‘CwF’.

2.1. Polarity Structure of the Preorder and Category Models 94

Lean—nouGAT

def PCwF : GAT := {[
include CwF;

neg_Con : Con ⇒ Con,
neg_Sub : {∆ Γ : Con} ⇒ Sub ∆ Γ ⇒

Sub (neg_Con ∆) (neg_Con Γ),
neg_Ty : {Γ : Con} ⇒ Ty Γ ⇒ Ty Γ,
neg_empty : neg_Con empty ≡ empty,
neg_id : {Γ : Con} ⇒

neg_Sub (id Γ) ≡ id (neg_Con Γ),
neg_comp : {Θ ∆ Γ : Con} ⇒

(X : Sub Θ ∆) ⇒ (W : Sub ∆ Γ) ⇒
neg_Sub (comp W X)
≡ comp (neg_Sub W) (neg_Sub X),

neg_nat : {∆ Γ : Con} ⇒
(W : Sub ∆ Γ) ⇒ (A : Ty Γ) ⇒
neg_Ty (substTy W A) ≡ substTy W (neg_Ty A),

invl_Con : (Γ : Con) ⇒ neg_Con(neg_Con Γ) ≡ Γ,
invl_Sub : {∆ Γ : Con} ⇒ (W : Sub ∆ Γ) ⇒

neg_Sub(neg_Sub W)
#〈 invl_Con ∆ 〉
#〈 invl_Con Γ 〉

≡ W,
invl_Ty : {Γ : Con} ⇒ (A : Ty Γ) ⇒

neg_Ty (neg_Ty A) ≡ A
]}

Figure 2.3: The GAT PCwF of Polarized CwFs.

95 Chapter 2. The Polarity Calculus

2.2 Theory of Polarized CwFs
In this section, our task will be to further develop the theory of PCwFs, and thereby get
a better understanding of what they are and how to operate with them. Since PCwFs
are a category-theoretic structure (PCwF extends Cat, so every PCwF is based on a
category), but the totality of PCwFs also organize into a category, we can study PCwFs
at two levels:4 we can explore the category of PCwFs—universal properties stated with
PCwFs, the relationship between CwF and PCwF, etc.—but we can also consider the
structure of a given PCwF—how its type theory behaves, different ways of arranging
the data, etc. We consider both viewpoints here, starting with the former.

An appropriate way to think of a PCwF is as a CwF, topped with a ‘polarization’—the
endofunctor on contexts and endo-natural transformation on Ty making the underlying
CwF into a PCwF. Taking this view, we might consider situations such as the following:
given a sub-CwF D ↩→ C where C comes equipped with a polarization, does the
polarization transfer (i.e. restrict) to the sub-CwF D? We obtain the following fact.

Proposition 2.2.1. Suppose D is a sub-CwF D ↩→ C of a PCwF C, which is closed
under the negation operation (_)− of C:

• for every Γ : ConD, its negation Γ− : ConC is also in ConD,
• for every f : SubD Δ Γ, its negation f− : SubC Δ− Γ− is also in SubD Δ− Γ−,
• for every � : TyD Γ, its negation �− : TyC Γ is also in TyD Γ;

then D is equipped with a polarization, the restriction of (_)− to D.

Of course, the PCwF structure D produced here is then a sub-PCwF of C. There’s
more that could be said on this matter—for instance, if any of these closure conditions
did not hold, then one could consider the least sub-PCwF of C containing D, and so on.
But this statement of Proposition 2.2.1 is adequate for our purpose here, specifically
our canonical examples.

Example 2.2.2. The groupoid model inherits the polarization of the category model
by Proposition 2.2.1: the opposite of every groupoid is a groupoid and the fiberwise
opposite of a family of groupoids is still a family of groupoids, so we can restrict the
category model’s polarization to the groupoid model. Likewise, the polarization of
the preorder model restricts to the setoid model.

It’s a bit funny to consider the opposite category of a groupoid, because groupoids
are inherently self-dual: for any groupoid Γ, the functor Γ → Γop which is the identity
on objects and sends W01 : Γ [W0, W1] to its inverse W−101 : Γ

op [W0, W1] is evidently self-
inverse, and in particular an isomorphism.5 So, unlike the context-negation operation
on the category model—where Γ and Γ− can be meaningfully different—the polarization
becomes essentially trivial when restricted to the groupoid model. Simply for the sake
of building up the surrounding theory of PCwFs,6 we make the phrase “essentially

4“Macroscopic” and “microscopic”, if you will.
5Remember this isomorphism for the next section!
6“We must also remember that a reserve of knowledge is always an advantage, and that the most

practical of mathematicians may be seriously handicapped if his knowledge is the bare minimum which

2.2. Theory of Polarized CwFs 96

trivial” precise with the following definition.

Definition 2.2.3. The functor ∇ : CwF → PCwF equips a CwF with the trivial
polarization, where all the negation operations are the identity:

Γ− := Γ f− := f �− := �.

Remark 2.2.4. The polarizations on the setoid and groupoid models obtained by
restricting the preorder and category polarizations (Example 2.2.2) are equivalent to
the trivial ones: for any groupoid Γ, there is an isomorphism between Γ itself (i.e. Γ−
in ∇(�fib(Grpd))) and its opposite Γop (i.e. Γ− using the polarization of �fib(Cat)).

The fact that Γ � Γ− when Γ is a groupoid will be of central focus in section 2.3.

Let’s establish one other fact about the relationship between CwF and PCwF. As
GATs, PCwF is an extension of CwF: we obtain the signature PCwF in the oneGAT
language by extending CwF along a successive series of oneGAT types-in-context.7
This means we automatically get a forgetful functor on their respective categories of
algebras, PCwF⇒ CwF. We’ll address one of the most immediate category-theoretic
questions prompted by the appearance of a forgetful functor: does it have a left adjoint?

Proposition 2.2.5 (Free Polarization). The forgetful functor PCwF→ CwF has a left
adjoint.

In words: any CwF C can be upgraded to a PCwF by the free addition of the
polarization; every context Γ, substitution f , and type � is given a formal negation
(Γ−, f−, and �−, respectively), satisfying the requirements of Definition 2.1.16—and
only those requirements. We won’t explore this construction further, other than to
say that the polarizations we care about (on the category and preorder models, and
consequently the groupoid and setoid models) are not free. We already established that
Γ � Γ− for all Γ in the setoid and groupoid models; Γ � Γ− is definitely not provable
from the laws of a PCwF (take the category model PCwF as a counterexample), hence
it shouldn’t hold in the free polarization.

Let’s now pivot from the theory of the category PCwF to considering the structure
of individual PCwFs. We remarked previously that there’s nothing really connecting the
deep and shallow polarities of a PCwF together—it makes perfect sense to define ‘deeply-
polarized CwFs’ and ‘shallowly-polarized CwFs’ with just one kind of polarization.
However, it’s hard to say much about these in isolation from each other: the real
intrigue in a PCwF lies in how the deep and shallow polarity interact. Mixing the
context-, substitution-, and type-negation operators together, we find that each PCwF
interprets two type theories: the usual one, and its negative ‘alter ego’.

Definition 2.2.6. Consider a PCwF with underlying CwF C =

(Con, Sub, Ty, Tm,B+, . . .). Define the negative CwF structure C− to have
• the same underlying category-with-terminal-object (Con, Sub, . . . , •, . . .) as C;

is essential to him; and for this reason we must add a little under every heading.” [Har92, Sect. 26]
7A oneGAT telescope!

97 Chapter 2. The Polarity Calculus

• Ty− Γ defined to be Ty(Γ−);
• Tm−(Γ, �) defined to be Tm(Γ−, �−);a
• for � : Ty− Γ, the negative context extension Γ B− � : Con defined by

Γ B− � := (Γ− B+ �−)− (2.2.7)
aCheck that this is well-formed: we want Tm− to be a presheaf on the category of elements of

Ty− , so � : Ty− Γ, i.e. � : Ty (Γ−). Hence �− : Ty (Γ−) too, and thus Tm (Γ−, �−) makes sense.

Recall that, in the category model, types � : Ty Γ are equivalent to split opfibrations
over Γ (in the sense of [AL19]). As we might expect, types in context Γ− (i.e. elements
of Ty− Γ) are equivalent to split fibrations.8 Thus, the negative CwF can be seen as a
type theory of fibrations, to complement the positive CwF’s type theory of opfibrations.

Consider Figure 2.4, which defines Ty Γ and Ty− Γ for the preorder model9 as
displayed preorders over Γ with opposite fibrancy data, rather than defining Ty− in
terms of Ty. Notice that it’s only in the fibrancy data that the two differ—displayed
preorders over Γ− and Γ are equivalent, but fibrant displayed preorders on Γ− (that is,
split opfibrations over Γ−) correspond to split fibrations on Γ (and vice versa). This is
one further reason that the preorder model is a more appropriate choice for studying
polarity than the concrete CwF �(PreOrd)—if Ty Γ and Ty− Γ are the same for all Γ,
then our (shallow) polarity is trivial.

This figure also shows that Ty− can be defined directly in the preorder model (and
likewise in the category model), instead of defining it as the composition of Ty with the
(_)− endofunctor. We might wonder if “PCwF” could instead be articulated in terms of
this dual-CwF structure instead of the endofunctor-and-endo-transformation definition
given above. However, careful comparison of Definition 2.1.16 with Definition 2.2.6
will reveal that the former actually contains more data: given two CwFs C and C−
on the same underlying category (Con, Sub), there’s no apparent way to recover the
endofunctor and endo-natural transformation that define a PCwF. Indeed, we can come
up with examples of two CwFs that share the underlying category but which don’t arise
as the positive and negative CwFs of some PCwF. We need to state some connection
between the CwFs, such as the following.

Proposition 2.2.8. The “positive” and “negative” CwFs, C and C−, of a PCwF are
isomorphic: the maps

Γ : Con ↦→ Γ− : Con

f : Sub Δ Γ ↦→ f− : Sub Δ− Γ−

� : Ty Γ ↦→ �− : Ty−(Γ−)
C : Tm(Γ, �) ↦→ C : Tm−(Γ−, �−)

form a CwF-morphism C → C−, which has an inverse C− → C (also given by Γ ↦→ Γ−,

8For us, the covariant notion (Ty) is primary, and we attach modifiers like “negative” to indicate
the contravariant notion (Ty−). Unfortunately, this is the opposite of the convention in the fibrations
literature (going back to Grothendieck), for whom the contravariant notion (fibration) is primary and
the covariant notion (opfibration) is derived. We avoid “op” in our notation partially for this reason.

9The same can be done for the category model, but would require a lot more data.

2.2. Theory of Polarized CwFs 98

pseudoAgda

record opfib ((Γ,≤,…) : PreOrd−Alg) ((ΓD,≤D,…) : PreOrd−DAlg
(Γ,≤,…)) : Set

where
coe⁺ : {W ₀ W₁ : Γ} → W ₀ ≤ W₁ → ΓD W ₀ → ΓD W₁
coh⁺ : {W ₀ W₁ : Γ}(W ₀D : ΓD W ₀) → (W ₀₁ : W ₀ ≤ W₁) → W ₀D ≤D (coe⁺ W ₀₁ W ₀D)
cart⁺ : {W ₀ W₁ W ₂ : Γ}(W ₀D : ΓD W ₀){W ₀₁ : W ₀ ≤ W₁}{W ₀₂ : W ₀ ≤ W ₂} →

(W ₂D : ΓD W ₂) → {W ₀₂D : W ₀D ≤D W ₂D} →
coe⁺ W ₀₁ W ₀D ≤D W ₂D

Ty (Γ : PreOrd−Alg) : Set
Ty Γ = (ΓD : PreOrd−DAlg Γ) × opfib Γ ΓD

record fib ((Γ,≤,…) : PreOrd−Alg) ((ΓD,≤D,…) : PreOrd−DAlg (Γ,≤,…)) :
Set

where
coe− : {W ₀ W₁ : Γ} → W ₀ ≤ W₁ → ΓD W₁ → ΓD W ₀
coh− : {W ₀ W₁ : Γ}(W₁D : ΓD W₁) → (W ₀₁ : W ₀ ≤ W₁) → (coe− W ₀₁ W₁D) ≤D W₁D

cart− : {W ₀ W₁ W ₂ : Γ}(W ₂D : ΓD W ₂){W ₀₁ : W ₀ ≤ W₁}{W ₀₂ : W ₀ ≤ W ₂} →
(W ₀D : ΓD W ₀) → {W ₀₂D : W ₀D ≤D W ₂D} →
W ₀D ≤D coe− W ₀₁ W ₂D

Ty− (Γ : PreOrd−Alg) : Set
Ty− Γ = (ΓD : PreOrd−DAlg Γ) × fib Γ ΓD

Figure 2.4: Ty and Ty− in the preorder model, defined directly in terms
of (op)fibrancy data on displayed preorders.

pseudoAgda

⊲− : (Γ : Con) → Ty Γ−→Con
| Γ ⊲− A | = (W : | Γ |) × | A(W) |
(Γ ⊲− A) [(W ₀,a₀) , (W₁,a₁)] = (W ₀₁ : Γ [W ₀,W₁]) × (A W ₀) [a₀ , A W ₀₁ a₁]

Figure 2.5: B− in the category model, defined from scratch.

99 Chapter 2. The Polarity Calculus

� ↦→ �−, etc.).

Notice that this CwF morphism is the identity on terms; by the involutive property
of negation, Tm−(Γ−, �−) = Tm(Γ, �), and thus it’s well-typed to send C to itself. This
corresponds to the fact that Definition 2.1.16 contains no operation on terms. Now,
this statement could perhaps be the basis of an alternative definition of ‘PCwF’: we
could say that a PCwF consists of a pair of CwFs on the same underlying category,
connected by a self-inverse CwF morphism. There are some aspects of this definition
which require further reflection (do we want to require that the CwF morphism is the
identity on terms?), but perhaps these can be resolved. We suspect that some version of
this formulation might make it possible to develop polarized type theory in the SOGAT
setting, but we leave this to future work.

The formulation of ‘PCwF’ given in Definition 2.1.16 is better suited to our purposes
anyways. Moving forward, we won’t have much use for Ty− and Tm−—the only part
of the negative CwF structure we’ll be interested in is the context extension operator
B−. Rather than treating B− as an operation living in an entirely separate CwF as
B+, we’ll want to be able to explore the interaction of the two. For instance, a simple
consequence of Equation 2.2.7 (and the fact that negation is an involution) is that, for
any � : Ty Γ,

(Γ B+ �)− = Γ− B− �−. (2.2.9)

That is, the negation ‘distributes’ over context extension. In what follows, these will be
the kind of ‘polarity calculations’ we need to perform; the negative context extension
operator is ultimately just an abbreviation (Equation 2.2.7), but a convenient one.

Toworkwith negative context extension, we need to develop its local representability
data. The claim that Tm− is locally representable with respect to Ty−—which is part of
the claim in Definition 2.2.6 that C− is a CwF—is elaborated to the following.

Proposition 2.2.10. In any PCwF, we have an isomorphism

Sub Δ (Γ B− �) �
∑

f : Sub Δ Γ

Tm(Δ−, �[f−]−)

natural in Δ.
Write p−,� : Sub (ΓB−�) Γ and v−,� : Tm((ΓB−�)−, �[p−−,�]−) for the results of ap-

plying the left-to-right direction to idΓB−�. For anyf : Sub Δ Γ and C : Tm(Δ−, �[f−]−),
write f ,− C for the right-to-left direction applied to (f, C).

Proof. The key definitions are as follows.

p−,� := p−+,�− (2.2.11)

v−,� := v+,�− (2.2.12)

f ,− C := (f− ,+ C)− (2.2.13)

The left-to-right map sends g to (p−,� ◦ g, v−,� [g−]). The already-established laws
of the polarity calculus (and the positive local representability) tell us that this is

2.2. Theory of Polarized CwFs 100

natural and inverse to the _ ,− _ operation: for instance,

p−,� ◦ g ,− v−,� [g−] =
(
(p−,� ◦ g)− ,+ v−,� [g−]

)−
=
(
p−−,� ◦ g− ,+ v−,� [g−]

)−
=
(
p+,�− ◦ g− ,+ v+,�− [g−]

)−
= ((p+,�− ,+ v+,�−) ◦ g−)−

= (g−)−

= g .

Proposition 2.2.14. There is a bijection between terms in Γ− of type �− and sections
of p−,�:

Tm(Γ−, �−) (g : Sub Γ (Γ B− �)) × p−,� ◦ g = idΓ .
(idΓ ,− _)

v−,� [(_)−]

Definition 2.2.15. Given f : Sub Δ Γ and a negative telescope �0 : Ty Γ−,
�1 : Ty(Γ B− �0)−, …�= , define the substitution

q−(f;�0, . . . , �=) : Sub (ΔB− �0 [f−] B · · ·B �= [q−(f;�0, . . . , �=−1)])
(Γ B− �0 B

− · · ·B− �=)

by
q−(f;�0, . . . , �=) := (q(f−, �−0 , . . . , �

−
=))−.

Equivalently, define it by induction:

q−(f,�0) := (f ◦ p− ,− v−)
q−(f;�0, . . . , �=+1) := (q−(f;�0, . . . , �=) ◦ p− ,− v−).

Let’s conclude this section with a treatment of dependent types in the category
model. Defining dependent pair types, i.e. Σ-types, won’t require any of the polarity
mechanisms we’ve discussed: Σ-types are “positive” in the sense that both � and � in
the type Σ�� are covariant in the context. Hofmann and Streicher do not explicitly
spell out the Σ-types in the groupoid model, but if we do, we find that it’s not ever
necessary to invert any morphism. Thus there is no polarity problem; we can take the
notion of Σ-types from undirected type theory [Hof97, Defn. 3.18]10 verbatim.

Definition 2.2.16. A (P)CwF supports Σ-types if the following data are given.

10Note that our notion of “supporting Σ-types” is what Hofmann calls “supporting Σ-types in the strict
sense.”

101 Chapter 2. The Polarity Calculus

pseudoAgda

Σ : {Γ : Con} → (A : Ty Γ) → Ty (Γ ⊲⁺ A) → Ty Γ
Σ[] : {∆ Γ : Con}(A : Ty Γ)(B : Ty (Γ ⊲⁺ A))(f : Sub ∆ Γ) →

Σ(A,B)[f] = Σ {Γ=∆} (A [f]) (B [q(f ;A)])
pair : {Γ}{A}{B} → Sub (Γ ⊲⁺ A ⊲⁺ B) (Γ ⊲⁺ Σ(A,B))
pair[] : {∆ Γ : Con}(A : Ty Γ)(B : Ty (Γ ⊲⁺ A))(f : Sub ∆ Γ) →

q(f ;Σ(A,B)) ◦ pair = pair ◦ q(f ;A,B)
p◦pair : {Γ}{A}{B} → (p (Σ(A,B))) ◦ pair = (p A) ◦ (p B)
Σ−elim : {Γ}{A}{B}{M : Ty (Γ ⊲⁺ Σ(A,B))} →

Tm(Γ ⊲⁺ A ⊲⁺ B, M[pair]) → Tm(Γ ⊲⁺ Σ(A,B), M)
ΣV : {Γ}{A}{B}{M}(m : Tm(Γ ⊲⁺ A ⊲⁺ B, M[pair])) →

(Σ−elim m)[pair] = m
Σ[: {Γ}{A}{B}{M}(m : Tm(Γ ⊲⁺ A ⊲⁺ B, M[pair])) →

(z : Tm(Γ ⊲⁺ A ⊲⁺ B, M[pair])) → (z[pair] = m) → z = Σ−elim m
Σ−elim[] : {∆}{Γ}{A}{B}{M} →

(m : Tm(Γ ⊲⁺ A ⊲⁺ B, M[pair])) → (f : Sub ∆ Γ) →
(Σ−elim m)[q(f ;Σ(A,B))] = Σ−elim {Γ=∆} (m [q(f ;A,B)])

The construction of Σ-types in the category model is relatively straightforward,
essentially the construction of positive context extension in a different guise: the
category Σ(�, �) W has pairs (0 : |� W |, 1 : |�(W, 0) |) as objects and morphisms given by

(Σ(�, �) W) [(0,1), (0′, 1′)] := (0 : (� W) [0, 0′]) × �(W, 0′) [�(idW , 0) 1, 1′] .

The morphism part of the Σ(�, �) functor is spelled out explicitly in Figure 2.6 for the
sake of completeness.

As usual, we will write � × � for Σ(�, � [p]) when � doesn’t depend on �, i.e.
�, � : Ty Γ. As we might expect, the type-negation distributes over non-dependent
products:

Tm(Γ, (� × �)−) � Tm(Γ, �− × �−).
However, it’s not clear (with the current machinery) how to even state the dependent
version: if � : Ty(Γ B+ �), then what’s the �′ : Ty(Γ B+ �−) that should appear on the
right-hand side of the ‘dependent version’:

Tm(Γ, (Σ��)−) � Tm(Γ, Σ �− �′)?

This is one of many problems which will prompt us to introduce neutrality in the next
section; there, we’ll be able to give a satisfactory answer (Proposition 2.3.13).

Defining the appropriate notion of Π-type for PCwFs requires a deeper engagement
with the polarity calculus—indeed, they are our main motivation for studying negative
context extension. If we examine the groupoid model semantics of Π-types [HS95,
Section 4.6], we find that it makes use of the fact that contexts are groupoids and types
are families of groupoids. Thus, we have a polarity problem preventing us from just
copying the definition into the category model, and must work out the variances.

2.2. Theory of Polarized CwFs 102

pseudoAgda

Σ : {Γ : Con}(A : Ty Γ) → Ty(Γ ⊲⁺ A) → Ty Γ
|Σ(A,B) W | := (a : |A W |) × |B(W ,a)|
(Σ(A,B) W)[(a,b) , (a’,b’)] := (a : AW [a , a’]) × B(W ,a’) [B(idW , a) b , b’]

Σ(A,B) W ₀₁ : (Σ(A,B) W ₀)⇒ (Σ(A,B) W₁)
Σ(A,B) W ₀₁ (a₀,b₀) := (A W ₀₁ a₀, B(W ₀₁, id) b₀)
Σ(A,B) W ₀₁

(
a₀, b₀

)
:=

(
A W ₀₁ a₀, B(W ₀₁, id) b₀

)
pair : Sub (Γ ⊲⁺ A ⊲⁺ B) (Γ ⊲⁺ Σ(A,B))
pair (W ,a,b) := (W ,(a,b))

pair :
(W ₀₁ : Γ [W ₀ , W₁]) →
(a₀₁ : (A W₁) [A W ₀₁ a₀ , a₁]) →
(b₀₁ : B(W₁,a₁,b₁) [B(W ₀₁,a₀₁) b₀ , b₁]) →
(Γ ⊲⁺ Σ(A,B)) [(W ₀,(a₀,b₀)) , (W₁,(a₁,b₁))]

pair W ₀₁ a₀₁ b₀₁ := (W ₀₁,(a₀₁,b₀₁))

Σ−elim {M} : Tm(Γ ⊲⁺ A ⊲⁺ B, M[pair]) → Tm(Γ ⊲⁺ Σ(A,B), M)
Σ−elim m : (W : |Γ|) → ((a,b) : |Σ(A,B) W |) → |M(W ,(a,b))|
Σ−elim m W (a,b) := m W a b

Σ−elim m :
(W ₀₁ : Γ [W ₀ , W₁]) →
((a₀₁,b₀₁) : (Σ(A,B) W₁) [Σ(A,B) W ₀₁ (a₀,b₀) , (a₁, b₁)]) →
(M(W₁,(a₁,b₁))) [M(W ₀₁,(a₀₁,b₀₁)) (m W ₀ a₀ b₀) , m W₁ a₁ b₁]

Σ−elim m W ₀₁ (a₀₁,b₀₁) := m W ₀₁ a₀₁ b₀₁

Figure 2.6: Semantics of Σ-types in the category model

103 Chapter 2. The Polarity Calculus

Function types are the most essential place where variance becomes a concern. As
is well-known in category theory and computer science, a set/type� appears negatively
in the set/type � → �. That is, � → � as a whole depends contravariantly on �: a
function � → �′ induces an operation �′ → � to � → �, not the other way around.
The same goes for dependent functions: in the type Π(�, �), it is the type � which
appears negatively and � which appears positively. In our polarity calculus, we must
capture this as dependence on the context: it makes sense to form Π(�, �) when � is
contravariant in the context, and � is covariant in the extended context. More precisely,
we make the following definition of Π-types in a PCwF.11

Definition 2.2.17. A PCwF supports polarized Π-types if it is equipped with the
following data.

pseudoAgda

Π : {Γ : Con} → (A : Ty Γ−) → Ty (Γ ⊲− A) → Ty Γ
lam : {Γ}{A}{B} → Tm (Γ ⊲− A, B) → Tm (Γ, Π(A,B))
app : {Γ}{A}{B} → Tm (Γ, Π(A,B)) → Tm (Γ ⊲− A, B)
ΠV : {Γ}{A}{B} → (t : Tm (Γ ⊲− A, B)) → app(lam t) = t
Π[: {Γ}{A}{B} → (f : Tm (Γ, Π(A,B))) → lam(app f) = f
Π[] : {∆ Γ}{A}{B} → (f : Sub ∆ Γ) →

Π(A,B)[f] = Π(A[f−], B [q(f−;A−)−])
lam[] : {∆ Γ}{A}{B}{t} → (f : Sub ∆ Γ) →

(lam t)[f] = lam (t [q(f−;A−)−])

As usual, the category model semantics of polarized Π-types (given in Figure 2.7)
are just the groupoid model semantics ([HS95, Section 4.6]), with proper care paid to
the polarities. To define the object part, we make use of the fibrant-displayed nature
of the category model: for each W : |Γ |, we can form the context �(W) and the type
�W := �(W, _) in this context. The category Π(�, �) W has terms of �W as objects and,
regarding such terms as functors �(W) ⇒ (�(W) B+ �W), the appropriate notion of
natural transformation as morphisms. In the non-dependent case, we write �→ � for
Π(�, � [p−]); note that � : Ty Γ− but � : Ty Γ in this case. As spelled out in Figure 2.9,
terms of type � → � and terms of (� → �)− both consist of families of functors
�(W) ⇒ �(W) indexed over objects W , but are natural over W01 : Γ [W0, W1] in opposite
ways—in the empty context, a function term � : � → � is literally a functor � ⇒ �.
Later, we will view non-dependent function types as synthetic functors, so it is reassuring
that they are indeed interpreted as functors.

We also have the following interaction between the polarity calculus and non-
dependent function types.

Proposition 2.2.18. In the category model, there is an operation for every Γ : Con,

11Note that this is the statement that appears in [LH11], modulo differences in notation.

2.2. Theory of Polarized CwFs 104

pseudoAgda

Π : {Γ : Con}(A : Ty Γ−) → Ty(Γ ⊲− A) → Ty Γ
|Π(A,B) W | := Tm(A(W), BW) where

BW : Ty(A W)
BW a := B(W ,a)
BW (x : (A W)[a , a’]) := B(idW ,x)

(Π(A,B) W)[θ , θ’] := Transform(θ,θ’) where
record Transform : (θ θ’ : Tm(A(W), BW)) → Set where
component : (a : |A W |) → (B(W ,a)) [θ a , θ’ a]
naturality : (x : (A W) [a , a’]) →
(θ’ x) ◦ B(W ,x)(component a) = (component a’) ◦ (θ x)

Π(A,B) W ₀₁ : Tm(A(W ₀), BW0) → Tm(A(W₁), BW1)
(Π(A,B) W ₀₁ θ₀) (a₁ : |A W₁|) := B(W ₀₁, idA W01 01) (θ₀(A W ₀₁ a₁))
(Π(A,B) W ₀₁ θ₀) (x₁ : A W₁ [a₁ , a₁’]) := B(W ₀₁, idA W01 0′1) (θ₀(A W ₀₁ x₁))

lam : Tm(Γ ⊲− A, B) → Tm(Γ, Π(A,B))
lam t’ : (W : |Γ|) → | (Π(A,B)) W |
lam t’ W : (a : |A W |) → |B(W ,a)|
lam t’ W a := t’(W ,a)

lam t’ W : (x : (A W)[a , a’]) → B(W ,a’)[B(idW ,x) (lam t’ W a), lam t’ W a’]
lam t’ W x := t’(idW ,x)

lam t’ : (W ₀₁ : Γ[W ₀ , W₁]) →
Transform {W = W₁} (Π(A,B) W ₀₁ (lam t’ W ₀), lam t’ W₁)

component(lam t’ W ₀₁) : (a₁ : |A W₁|) →
B(W₁,a₁)[B(W ₀₁, idA W01 01) (lam t’ W ₀ (A W ₀₁ a₁)) , lam t’ W₁ a₁]

component(lam t’ W ₀₁) a₁ := t’(W ₀₁, idA W01 01)

naturality(lam t’ W ₀₁) (x₁ : (A W₁)[a₁ , a₁’]) := (Figure 2.8)

app : Tm(Γ, Π(A,B)) → Tm(Γ ⊲− A, B)
app f : (W : |Γ|) → (a : |A W |) → |B(W ,a)|
app f W a := f W a −− (f W) : (a : |A W |)→ |BW a|

app f :
(W ₀₁ : Γ[W ₀ , W₁]) →
(a₀₁ : (AW ₀)[a₀ , A W ₀₁ a₁]) →
B(W₁,a₁)[B(W ₀₁,a₀₁) (app f W ₀ a₀), app f W₁ a₁]

app f W ₀₁ a₀₁ := (component(f W ₀₁) a₁) ◦ B(W ₀₁, id) (f W ₀ a₀₁)

Figure 2.7: Semantics of Π-types in the category model

105 Chapter 2. The Polarity Calculus

C ′(W1, G1) ◦ �(idW1, G1) (C ′(W01, id� W01 01))
= C ′(idW1 ◦ W01, (� W01 G1) ◦ id� W01 01)
= C ′(W01, � W01 G1)
= C ′(W01 ◦ idW0, (� idW0 id� W01 0′1) ◦� W01 G1)
= C ′(W01, id� W01 0′1) ◦ �(W01, id� W01 0′1) (C

′(idW0, � W01 G1))

Figure 2.8: A naturality calculation for the morphism part of lam t′.

pseudoAgda

−− Natural transformation
record Nat {W₁} : (θ θ’ : A(W₁)⇒ B(W₁)) → Set where
component : (a : |A(W₁)|) → B(W₁) [θ a , θ’ a]
naturality : (x₁ : (A W₁) [a₁ , a₁’]) →

(θ’ x₁) ◦ (component a₁) = (component a₁’) ◦ (θ x₁)

−− F : Tm(Γ, (A→ B)−)
F : (W : |Γ|) → (A(W)⇒ B(W))
F : (W ₀₁ : Γ [W ₀,W₁]) → Nat F(W₁) (B(W ₀₁) ◦ F(W ₀) ◦ A(W ₀₁))

−− G : Tm(Γ, A→ B)
G : (W : |Γ|) → (A(W)⇒ B(W))
G : (W ₀₁ : Γ [W ₀,W₁]) → Nat (B(W ₀₁) ◦ G(W ₀) ◦ A(W ₀₁)) G(W₁)

Figure 2.9: Non-dependent functions in the category model

2.2. Theory of Polarized CwFs 106

pseudoAgda

(_)− : {Γ}{A : Ty Γ−}{B : Ty Γ} → Tm(Γ, (A → B)−) → Tm(Γ, A−→B−)
F− : (W : |Γ|) → (A−(W)⇒ B−(W))
F− W := (F(W))op −− op endofunctor on Cat

F− : (W ₀₁ : Γ [W ₀ , W₁]) → Nat (B−(W ₀₁) ◦ F−(W ₀) ◦ A−(W ₀₁)) F−(W₁)
component(F− W ₀₁) : (a₁ : |A W₁|) →

B(W₁) [F− W₁ a₁ , (B−(W ₀₁) ◦ F−(W ₀) ◦ A−(W ₀₁)) a₁]
component (F− W ₀₁) := component(F W ₀₁)

naturality(F− W ₀₁) := naturality(F W ₀₁)

Figure 2.10: Terms Tm(Γ, (� → �)−) are terms Tm(Γ, �− → �−) in
the category model.

� : Ty Γ−, � : Ty Γ

(_)− : Tm(Γ, (�→ �)−) → Tm(Γ, �− → �−)

such that ((�−)− = �).

The construction is given in Figure 2.10; the fact that it is an involution follows from
the fact that the (_)op endofunctor is. If we wish to view types as synthetic categories
(with �− the opposite category of �) and functions as synthetic functors, then this is
not a surprising statement: a term of (�→ �)− is a synthetic functor from � to �, and
that should be usable as a functor on their opposite categories �− → �−. The only
wrinkle here is that � : Tm(Γ, (� → �)−), not Tm(Γ, � → �); this is just to get the
variance on W01 right—note that the term � in Figure 2.9 has the wrong shape. In order
to turn a �→ � term into a �− → �− term, then we somehow need a way to turn it
into a (�→ �)− term first; this is also a problem which neutrality will solve for us.

Finally, let’s obtain the application operator appropriate to this notion of Π-types,
allowing us to apply a function term � to an argument term, C . As usual, this is done by
substituting C into app � , except we must use the negative CwF facilities.

Definition 2.2.19. In a PCwF supporting Π-types, define the operator

_ $ _ : {Γ}{�}{�} → Tm(Γ,Π(�, �)) → (C : Tm(Γ−, �−)) → Tm(Γ, � [id ,− C])
� $ C := (app �) [id ,− C]

This is the appropriate application operator for our setting, but it has a bit of an
unsatisfying shape: in order to get the polarities to work out, we need the function �
and its argument to live in different contexts (Γ and Γ−, respectively). Moreover, given
the nature of negative context extension, we also need C to be of type �− in order for
id ,− C to be well-typed.

107 Chapter 2. The Polarity Calculus

2.3 Neutrality

The ‘polarity calculus’ of a PCwF has the same function as any type discipline: enforce
a formal condition on types and terms, and rule out as ‘ill-formed’ or ‘ill-typed’ those
terms which do not meet the condition. For the polarity calculus, the formal condition
being enforced is the appropriate respect of variances; for instance, Γ B− � is only
well-formed if � : Ty(Γ−), not if � : Ty Γ.12 The formal constraints imposed by this
polarity calculus prohibit various constructions which otherwise would’ve been well-
formed and well-typed, namely those which fail to respect variance.13 However, when
designing a type discipline, one must take care to not be too restrictive, lest the theory
becomes unwieldy or downright unusable. As we’ve started to see with our discussion of
dependent types in the category model, our polarity calculus might be more restrictive
than we want: we can’t characterize (Σ � �)− compositionally in terms of �− and �−,
we have to take a function and its argument from opposite contexts, and we can’t view
functions of type �→ � as functions �− → �−.

It gets worse. To see how, let’s consider the de Bruijn indices of the negative CwF
of a PCwF.

Remark 2.3.1. Define the de Bruijn indices for the negative CwF as follows:

v−0 {Γ}{�0} := v−,�0 : Tm((Γ B− �0)−, �0 [p−−,�0
]−)

v−=+1{Γ}{�0 . . . �=+1} := v−= [p−−,�=+1
]

: Tm((Γ B− �0 B
− · · ·B− �=+1)−, �0 [p−−,�=+1

◦ · · · ◦ p−−,�0
]−)

(2.3.2)

where {�0 . . . �=+1} is a telescope over Γ with respect to the negative CwF, i.e.
�0 : Ty Γ−, �1 : Ty (Γ B− �0)−, and so on.a However, recalling Equation 2.2.11 and
Equation 2.2.12, we see that these reduce to the positive CwF de Bruijn indices with
the context and type negated:

v−0 := v−,�0 : Tm((Γ B− �0)−, �0 [p−−,�0
]−)

= v+,�−0 : Tm(Γ− B+ �−0 , �0 [p+,�−0]
−)

= v0 : Tm(Γ− B+ �−0 , �
−
0 [p+,�−0])

i.e. the de Bruijn index 0 for Γ B− �0 is the de Bruijn index 0 for Γ− B+ �−0 . Likewise
for 1:

v−1 := v−0 [p
−
−,�1
] : Tm((Γ B− �0 B− �1)−, �0 [p−−,�1

◦ p−−,�0
]−)

= v0 [p+,�−1] : Tm(Γ− B+ �−0 B+ �−1 , �0 [p+,�−1 ◦ p+,�−0]
−)

= v1 : Tm(Γ− B+ �−0 B+ �−1 , �
−
0 [p+,�−1 ◦ p+,�−0])

and so on. So Equation 2.3.2 could be replaced with

v−= {Γ}{�0 . . . �=} := v={Γ−}{�−0 . . . �−= }.

12Unless Γ− = Γ, as is the case where Γ is •.
13At this stage, the “variance” is purely formal, a calculus of empty symbolic decorations:. Only once

we introduce directed equality and transport in the next chapter will we be able to attach the usual
category-theoretic meaning of co- and contra-variant to these polarities.

2.3. Neutrality 108

aBy Equation 2.2.7, the requirement that �1 : Ty (ΓB− �0)− is the same as saying �1 : Ty (Γ− B+
�−0). Carrying this through, we find that the “negative telescope” {�0 . . . �=+1} on Γ is the same as
the “positive telescope” {�−0 . . . �−=+1} on Γ− .

The variable terms v−= make sense and fit appropriately into the theory, but they
don’t mesh with the polarized Π-types in the way we’d hope. This can be seen most
acutely in the case of the identity function (or lack thereof).

Remark 2.3.3. In unpolarized type theory, we can define the identity function

lam v0 : Tm(Γ, �→ �).

But this doesn’t work with polarized type theory:
• � → � is not a well-formed type: in order to have � as the domain type, it
must be the case that� : Ty Γ−. But to have� as the codomain type, we’d need
a way to view� as a type in context ΓB−�, i.e. we’d need to substitute� along
some substitution Sub (Γ B− �) (Γ−). But we don’t have such a substitution
in general: both p−,� and its negation, p+,�− , have the wrong shape.

Γ B− � (Γ B− �)− = Γ− B+ �−

Γ Γ−

p−,� ? p−−,�=p+,�−

• v−0 lives in the wrong context to have lam applied: the negative variable term
v−,� is a term in the negation of ΓB−�, but lam expects a term in ΓB−� itself.

Note that these are problems of polarity: by annotating our contexts with polarities—
distinguishing Γ from Γ− and Γ B− � from (Γ B− �)−, etc.—we have forbidden the
identity function from our theory; our typing discipline is strong enough to declare
lam v−0 and � → � is ill-formed. We would encounter similar problems if we were
to try and define the composition of functions as well. As it stands, this type theory
is simply too polarized for its function types to behave anything like how we want
function types to behave.

The solution, then, is to neutralize some of the polarity. That is, wewant some limited
ways to overcome the difference between Γ and Γ−, between Γ B− � and (Γ B− �)−,
and so on. Let us emphasize that we want limited neutralization: we don’t want to
render the polarity calculus completely irrelevant, or else we’d be back to unpolarized
type theory. Our solution will be to delineate a certain class of neutral contexts; these
neutral contexts will still exist within a polarized type theory—indeed, it is only with
respect to an ambient polarity calculus that “neutral” will have any meaning—but they
will come equipped with further machinery that allows us to solve the above-mentioned
problems (and further ones that will arise). Carefully maintaining this balance—keeping
polarity around, but keeping it at bay—will create an environment where directed type
theory is possible.

Wewill arrive at our notion of ‘neutral-polarized CwF’ (PCwFswith an appropriately-

109 Chapter 2. The Polarity Calculus

chosen class of ‘neutral contexts’) in several stages. Throughout, the category model
will be our guide, and its empty context the paradigm example of a neutral context. As
our first approximation (or, rather, our zeroth approximation) of the NPCwF notion, we
stipulate that our neutral contexts have enough structure to at least form the type of
endofunctions—resolving the first issue from Remark 2.3.3. In the next stage, we add
some machinery for manipulating contexts of the form Γ B � where Γ is neutral but �
is not. This will enable us to write the identity function, but the additional structure we
require will let us do a number of intriguing and useful things. And then finally we can
give the full definition of NPCwF and discuss the resulting type theory.

2.3.1 Phase Zero
As mentioned, our prototype neutral context will be the empty context. Recall that the
empty context is equal to its own opposite, • = •−. So, if � : Ty •, then � is also a type
in •−, and thus the endofunction type �→ � is well-formed. So, more generally, the
first of the problems in Remark 2.3.3 disappears whenever Γ = Γ−. But this is stronger
than we need: so long as there’s some substitution e : Sub Γ− Γ, then �[e] → � is
a well-formed type in Γ; in the case of •, the e in question just happens to be the
identity id• . Of course, the identity is particularly nice—if e is just any substitution,
then �[e] might be a totally different type than � and calling terms of type �[e] → �

“endofunctions” would be inaccurate. But if e is at least an isomorphism (as id• is)
then the term-substitution operation furnishes a bijection Tm(Γ, �) � Tm(Γ−, �[e]),
making �[4] a good-enough stand-in for � in the context Γ−.

Remark 2.3.4. Given � : Ty Γ and e : Γ− � Γ we can form the endofunction type

� : Ty Γ e : Sub Γ− Γ

�[e] : Ty(Γ−) � : Ty Γ

�[e] → � : Ty Γ

In the category model, the isomorphism e can be constructed not just for the empty
context, but, in fact, for any groupoid context: if Γ is a groupoid, then e : Γ− � Γ can be
defined as the identity function on objects, and on morphisms the operation sending
W10 : Γ

op [W0, W1] to its inverse W−110 : Γ [W0, W1]. So, while the endofunction type �→ �

is not well-formed in the category model when Γ is any category, the type �[e] → �

is well-formed when we require Γ to be a groupoid. Thus, “groupoid” is a sensible
candidate for the notion of “neutral context” in the category model. Metatheoretically,
this seems like a particularly elegant choice: the groupoid model is a paradigm model
of unpolarized type theory and the category model a paradigm model of polarized type
theory; if our goal is to articulate a neutral (i.e. unpolarized) fragment of polarized type
theory, we should naturally start by exploring the role of groupoids in the category
model. Accordingly, we’ll take groupoids to be the neutral contexts of the category
model.

Henceforth, we’ll use the notation Γ : NeutCon to mean that Γ is neutral, i.e. a
groupoid (or a setoid, when we’re working with the preorder model). Now, remember
that our ambient type theory is still polarized: even if Γ is a groupoid, the judgment

2.3. Neutrality 110

� : Ty Γ still means � : Γ ⇒ Cat, not necessarily � : Γ ⇒ Grpd. We’ll also introduce
notation for the latter: write� : NeutTy Γ to mean that� : Γ ⇒ Grpd. Once again, the
fibrancy of the category model means that context structure (the subcategory relation
NeutCon ↩→ Con) also plays out fiberwise (the sub-presheaf relation NeutTy ↩→ Ty).
The inclusion also gets reflected internally: later, we’ll develop the types � : Ty Γ of
the category model as synthetic categories; the neutral types, we’ll find, are synthetic
groupoids.

Though the set NeutTy Γ makes sense for any context Γ, we can say a bit more
about neutral types in a neutral context, namely that

Γ : NeutCon � : NeutTy Γ

Γ B+ � : NeutCon. (2.3.5)

If we did not know that both Γ and � were neutral, we would not be able to conclude
that ΓB+� is. But if Γ is a groupoid and � is a family of groupoids over Γ, then we can
show Γ B+ � is a groupoid. This is just the context extension operation of the groupoid
model: the subcategory inclusion Grpd ↩→ Cat is in fact a sub-CwF inclusion, of the
groupoid model into (the positive CwF of) the category model—NeutCon and NeutTy
are just our notations for the image of this inclusion. We do not need to write NeutSub
and NeutTm, however, because the inclusion is both full and locally full.

Definition 2.3.6. A sub-CwF D ↩→ C is said to be
• full if the Sub-inclusion map SubD Δ Γ → SubC Δ Γ is surjective for all
Δ, Γ : ConD

• locally full if the Tm-inclusion map TmD (Γ, �) → TmC (Γ, �) is surjective
for all Γ : ConD and � : TyD Γ.

One other aspect worth mentioning about the e isomorphisms for groupoids is that
the isomorphisms themselves are self-dual: since Γ being a groupoid implies that Γ− is
a groupoid too, we have the functors

eΓ : Γ− ⇒ Γ and 4Γ− : Γ ⇒ Γ−.

But notice that these are inverses: 4Γ ◦ 4Γ− = idΓ and vice versa. Moreover, e−Γ—the
application of the opposite endofunctor on Cat to eΓ—is also equal to eΓ− . It’s unclear
whether these are coincidences of the category model, or some more fundamental
fact. We’ll take them as part of the definition of “NPCwF” because they are convenient
technically—they save us from having to axiomatize the relationship between eΓ , eΓ− ,
e−1Γ , and e−Γ—but it seems plausible that a weaker assumption than eΓ− = e−1Γ = e−Γ
would suffice.

Let’s now collect these observations into our initial version of “NPCwF”. Our reason
for calling it “zero-ary” will become more clear as we proceed.

Definition 2.3.7 (NPCwF—Version 0). A (zero-ary) neutral-polarized CwF is a
PCwF with

• a sub-collection of neutral contexts NeutCon ↩→ Con and
• a sub-presheafa of neutral types NeutTy ↩→ Ty

such that

111 Chapter 2. The Polarity Calculus

• the empty context is neutral, • : NeutCon;
• the context extension Γ B+ � of Γ : NeutCon by � : NeutTy Γ is a neutral
context;

• NeutCon is closed under isomorphism; and
• for every Γ : NeutCon, there is an isomorphism

eΓ : Γ− � Γ

where
– e−1Γ = e−Γ = eΓ− and
– eΓ ◦ f− = f ◦ eΔ for any Δ : NeutCon and f : Sub Δ Γ.

aNote that this includes the requirement that neutral types are stable under substitution: if
� : NeutTy Γ, then �[f] : NeutTy Δ for all f : Sub Δ Γ.

The requirement that NeutCon is closed under isomorphism doesn’t play much of a
role in subsequent developments; we mainly include it as a more general fact (validated
by the category model, of course) than the more specific instance that Γ : NeutCon
implies Γ− : NeutCon. The fact that the sub-(P)CwF of neutral contexts and types is a
full and locally full is made implicit in this definition: we don’t define separate notions
of “neutral substitution” nor “neutral term”, so the only notion of substitution available
between neutral contexts is the Sub of the ambient PCwF, and likewise for terms.

This definition begins to axiomatize the situation of the groupoid model as a neutral
sub-PCwF of the category model, and, as we saw, begins to solve some of the issues
raised at the beginning of the section about the usefulness of function types in polarized
type theory. But it does not help us in actually writing functions, as this inherently
involves extending the context, perhaps by a non-neutral type. So we must equip our
neutral contexts with more machinery.

2.3.2 Phase One
What about the second issue of Remark 2.3.3? It’s all well and good to be able to write
down the type �[e] → �, but to actually be useful, we’ll want to actually inhabit this
type. Granting e : Γ− � Γ, we still have that

v0 : Tm(Γ B+ �,�[p+,�])
v−0 : Tm((Γ B− �[e])−, �[e ◦ p−−,�[e]]).

Neither of these can be lambda-abstracted to get a term of type �[e] → �, as both live
in the wrong context. Well, let’s return to the empty context of the category model.
Notice that a closed type � in the category model is the same thing as a category, and
that category is isomorphic to both •B+� and •B−�[e]—since • has only the identity
morphism, the morphisms of these categories are just given by the morphisms of �.
Therefore, obtain an isomorphism

• B− �[e] • B+ �.ee

2.3. Neutrality 112

Lean—nouGAT

def N₀PCwF : GAT := {[
include PCwF;

isNeut_Con : Con ⇒ U,
isNeut_Con_prop : (Γ : Con) ⇒

(nΓ nΓ' : isNeut_Con Γ) ⇒ nΓ ≡ nΓ',
isNeut_Ty : {Γ : Con} ⇒ Ty Γ ⇒ U,
isNeut_Ty_prop : {Γ : Con} ⇒ {A : Ty Γ} ⇒

(nA nA' : isNeut_Ty A) ⇒ nA ≡ nA',

neut_empty : isNeut_Con empty,
neut_ext : {Γ : Con} ⇒ {A : Ty Γ} ⇒

isNeut_Con Γ ⇒ isNeut_Ty A ⇒
isNeut_Con (ext Γ A),

neut_substTy : {∆ Γ : Con} ⇒ {A : Ty Γ} ⇒
{f : Sub ∆ Γ} ⇒ isNeut_Ty A ⇒
isNeut_Ty (substTy f A),

neut_iso : {∆ Γ : Con} ⇒
(W : Sub ∆ Γ) ⇒ (X : Sub Γ ∆) ⇒
{_ : comp X W ≡ id Γ} ⇒
{_ : comp W X ≡ id ∆} ⇒
isNeut_Con Γ ⇒ isNeut_Con ∆,

e : (Γ : Con) ⇒ {_ : isNeut_Con Γ} ⇒
Sub (neg_Con Γ) Γ,

e_sect : {Γ : Con} ⇒ {_ : isNeut_Con Γ} ⇒
comp (neg_Sub (e Γ)) (e Γ) ≡ id (neg_Con Γ),

e_retr : {Γ : Con} ⇒ {_ : isNeut_Con Γ} ⇒
comp (e Γ) (neg_Sub (e Γ)) ≡ id Γ,

e_dual : (Γ : Con) ⇒ {_ : isNeut_Con Γ} ⇒
(neg_Sub (e Γ)) ≡ e (neg_Con Γ),

e_square : {Γ : Con} ⇒ {_ : isNeut_Con Γ} ⇒
{∆ : Con} ⇒ {_ : isNeut_Con ∆} ⇒
(f : Sub ∆ Γ) ⇒
comp (e Γ) (neg_Sub f) ≡ comp f (e ∆)

]}

Figure 2.11: The GAT N0PCwF of zero-ary NPCwFs.

113 Chapter 2. The Polarity Calculus

So then observe v0 [ee] : Tm(• B− �[e], �[p−,�[e]]).14 This we can lambda-abstract to
a term of type �[e] → �, the identity function. If we spell out the category model
semantics of lam(v0 [ee]), we find that it is indeed the identity functor on the category
�.

This isomorphism can also be defined in an arbitrary groupoid context.

Definition 2.3.8. For any Γ : NeutCon and � : Γ ⇒ Cat, define

ee : Γ B− �[e] � Γ B+ �

to be
• the identity on objects (since |Γ B− �[e] | = |Γ B+ �|);
• to have morphism part

ee :
(
(W01, x) : (W01 : Γ [W0, W1]) × (� W0) [00, � W−101 01]

)
↦→ (W01, � W01 x) : (W01 : Γ [W0, W1]) × (� W1) [� W01 00, 01];

• to have inverse given by

ee−1 : ((W01, x) : (W01 : Γ [W0, W1]) × (� W1) [� W01 00, 01])
↦→ (W01, � W−101 x) : (W01 : Γ [W0, W1]) × (� W0) [00, � W−101 01] .

Proposition 2.3.9. For the ee ismorphism defined in Definition 2.3.8, the following
triangle commutes.

Γ B− �[e] Γ B+ �

Γ

ee

p−,�[e] p+,�

What these ee isomorphisms allow us to do is sidestep the inconvenient negative
CwF structure: we can operate the (dependent) function types—which are defined in
terms of B−—by using the much more convenient positive CwF structure, and coercing
back-and-forth with ee as needed.

Definition 2.3.10. Suppose Γ : NeutCon and � : Ty Γ is such that ee : Γ B− �[e] �
ΓB+� satisfying the equality given in Proposition 2.3.9. Then, for any � : Ty(ΓB+�),

14We silently use the fact that p+,� ◦ ee = p−,�[e] . We know this because the codomain of these
morphisms is •, the terminal object.

2.3. Neutrality 114

define the following operations for working with Π-types.

lam+ : Tm(Γ B+ �, �) → Tm(Γ,Π(�[e], �))
lam+ 1 := lam(1 [ee])
app+ : Tm(Γ,Π(�[e], �)) → Tm(Γ B+ �, �)
app+ � : (app �) [ee−1]

Write $+ for the operation

_ $+ _ : {Γ}{�}{�} → Tm(Γ,Π(�[e], �)) → (C ′ : Tm(Γ, �)) → Tm(Γ, � [id ,+ C ′])
� $+ C ′ := (app+ �) [id ,+ C ′] .

Definition 2.3.11. For Γ : NeutCon and � : Ty Γ as above, define the identity
function on �:

�� := lam+v0 : Tm(Γ, �[e] → �) .

Definition 2.3.12. For Γ : NeutCon and types�, �,� : Ty Γ such that lam+ and app+
are defined, define function composition:

_ ◦ _ : Tm(Γ, � [e] → �) → Tm(Γ, �[e] → �) → Tm(Γ, �[e] → �)
� ◦ � := lam+((app+ �) [p ,+ app+ �])

The ee isomorphisms allow us to overcome another roadblock we encountered:
characterizing (Σ � �)−. We’re now able to state the following “negative version” of
Proposition 1.2.14.

Proposition 2.3.13. In the category model, there is a bijection

Unpair− : Tm(Γ, (Σ � �)−) � (C : Tm(Γ, �−)) × Tm(Γ, � [ee] [id ,− C [e]]−) : Pair−.

Proof. First, observe the shape of a term) : Tm(Γ, (Σ � �)−):

) : (W : |Γ |) → (0 : |� W |) × |�(W, 0) |
) : (W01 : Γ [W0, W1]) →

(010 : (�W1) [() W1)#1, � W01 () W0)#1])
× �(W1, � W01 () W0)#1) [

�(idW1, 010) () W1)#2,

�(W01, id) () W0)#2

]

So, given such a) , sending W ↦→ () W)#1 and W01 ↦→ () W01)#1 defines the required
term C : Tm(Γ, �−). So we just have to define a term

k : Tm(Γ−, � [ee] [id ,− C [e]]−)

115 Chapter 2. The Polarity Calculus

i.e.

k : (W : |Γ |) → |�(W, () W)#1) |
k : (W01 : Γ [W0, W1]) →

�(W1, () W1)#1) [
() W1)#2

�(W01, � W01 () W−101)#1) (() W0)#2),
]

(see Equation 2.3.14 and Equation 2.3.15). For the object part, observe that W ↦→
() W)#2 will work. To define the morphism part k (W01), the second component of
) (W01) is almost right:

() W01)#2 : �(W1, � W01 () W0)#1) [
�(idW1, () W01)#1) () W1)#2

�(W01, id) () W0)#2

] .

It just needs a small adjustment by the functor

�(idW1, � W01 () W−101)#1) : �(W1, � W01 () W0)#1) ⇒ �(W1, () W1)#1).

If we put
k (W01) := �(idW1, � W01 () W−101)#1) () W01)#2.

then this has the right domain by Equation 2.3.16 and the right codomain by Equa-
tion 2.3.17. The other direction is similar.

Something interesting is happening here. � is a type in context Γ B+ �, that is,
a type depending on a free variable of type �. But C is a term of type �−. How did
we manage to substitute C into � to make the above claim work? The composition
ee ◦ (id ,− C [e]) is where we make the sleight-of-hand: recall that terms of type � are
in bijection with sections of p : Sub (Γ B+ �) Γ. By virtue of Proposition 2.3.9, the
substitution ee ◦ (id ,− C [e]) is such a section.

Γ Γ B− �[e] Γ B+ �
id ,− C [e] ee

p

p+ ◦ ee ◦ (id ,− C [e]) = p− ◦ (id ,− C [e]) (Proposition 2.3.9)
= id

So the corresponding term, v+ [ee] [id ,− C [e]] is of type �. That is, we’ve turned a term
of type �− into a term of type �. This is quite a useful maneuver, so we give it its own
notation.

2.3. Neutrality 116

(� [ee] [id ,− C [e]]) W = � [ee] (id W, () (e W))#1)
= � [ee] (W, () W)#1)
= �(W, () W)#1)

(2.3.14)

(� [ee] [id ,− C]) (W01 : Γ [W0, W1]) (10 : |�(W0, () W0)#1) |)
= � [ee] (id W01, () (e W01))#1) 10
= � [ee] (W01, () W−101)#1) 10
= �(W01, � W01 () W−101)#1) 10

(2.3.15)

�(idW1, � W01 () W−101)#1)
(
�(idW1, () W01)#1) () W1)#2

)
= �

(
idW1, � W01 () W−101)#1 ◦ () W01)#1

)
() W1)#2

= �(idW1, id() W1)#1
) () W1)#2

= () W1)#2

(2.3.16)

�(idW1, � W01 () W−101)#1)
(
�(W01, id� W01 () W0)#1

) () W0)#2
)

= �
(
W01, � W01 () W−101)#1 ◦ id� W01 () W0)#1

)
() W0)#2

= �
(
W01, � W01 () W−101)#1

)
() W0)#2

(2.3.17)

Figure 2.12: Auxiliary calculations for the proof of Proposition 2.3.13.

117 Chapter 2. The Polarity Calculus

id : Sub Γ Γ

Γ : NeutCon
4 : Γ− → Γ C ′ : Tm(Γ, �)
C ′[e] : Tm(Γ−, �[e] [id−]−−)

(id ,− C ′[e]) : Sub Γ (Γ B− �[e]−)
Γ : NeutCon �− : Ty Γ

ee : Sub (Γ B− �[e]−) (Γ B+ �−)
ee ◦ (id ,− C ′[e]) : Sub Γ (Γ B+ �−)

v0 [ee] [idΓ ,− C ′[e]] : Tm(Γ, �− [p+] [ee] [idΓ ,− C ′[e]])
v0 [ee] [idΓ ,− C ′[e]] : Tm(Γ, �−)

(2.3.19)

�− [p+] [ee] [idΓ ,− C ′[e]] = �− [p+ ◦ ee] [idΓ ,− C ′[e]]
= �− [p−] [idΓ ,− C ′[e]]
= �− [idΓ]
= �−

(2.3.19)

Figure 2.13: The definition given in Definition 2.3.18 has the appropri-
ate type.

Definition 2.3.18. In any NPCwF with ee isomorphisms as in Proposition 2.3.9,
define the term negation operation

Γ : NeutCon C ′ : Tm(Γ, �)
−C ′ : Tm(Γ, �−)

by
−C ′ := v0 [ee] [idΓ ,− C ′[e]] .

This has the correct type, by Figure 2.13

Example 2.3.20. In the category model, the operation Tm(Γ, �) → Tm(Γ, �−)
defined in Definition 2.3.18 has the following semantics.

pseudoAgda

− : {Γ : NeutCon}{A : Ty Γ} → Tm(Γ,A) → Tm(Γ,A−)
−t’ W = t’ W
−t’ W ₀₁ = A W ₀₁ (t’(W ₀₁−¹))

From the standpoint of synthetic category theory, this is a desirable outcome. If
types � are supposed to represent categories, terms to represent objects, and �− is
supposed to be the opposite category of �, then we’d expect such an operation: a
category and its opposite category have the same objects. In a neutral context, they
do. This also addresses a significant issue with the type theory of [Nor19], namely that

2.3. Neutrality 118

there was no general way to produce terms of type �− in that theory. If we accept a
restriction to neutral contexts, then we have a way to produce terms of�−: just convert
from terms of �. It also addresses another issue from the previous section: recall that
in an arbitrary context we could turn terms of type (�→ �)− into terms of �− → �−,
but the variances prevented a general method to turn terms of type �→ � into terms
of type �− → �−. But now we’ve solved that: given � : Tm(Γ, �→ �), just consider
−� : Tm(Γ, (�→ �)−). Then we have (−�)− : Tm(Γ, �− → �−), as desired. This obeys
the following law.

Proposition 2.3.21. For � : Tm(Γ, �[e] → �) and C : Tm(Γ, �−) in the category
model,

−((−�)− $+ C) = � $+ (−C).

Now, above we said that � and �− have the same terms by virtue of this operation.
We haven’t proved that: given C ′ : Tm(Γ, �), we can negate it to get −C ′ : Tm(Γ, �−) and
then again: −−C ′ : Tm(Γ, �), but we don’t know yet that−−C ′ = C ′ as the notation might
suggest. In the category model at least, it’s a simple calculation from Example 2.3.20.

Proposition 2.3.22. In the category model,

−(−C ′) = C ′

for every term C ′ in a neutral context.

Proof.

− − C ′W01 = �− W01 (−C ′ W−101)
= �− W01 (� W−101 (C

′ W01))
= � (W01 ◦ W−101) (C

′ W01)
= � idW1 (C ′ W01)
= C ′ W01

But what about in general? It’s certainly not obvious that

C ′ = v+ [ee] [id ,− v+ [ee] [id ,− C ′[e]] [e]] .

Indeed, it appears that we haven’t asserted enough properties of ee in order to be able
to prove this abstractly; we’ll need to add an axiom to our NPCwF notion if we want
this to be true in an arbitrary NPCwF. We could just directly assert the above equation
(it holds in the category model, so there’s no soundness concern), but it will be more
helpful if we can find a slightly more general statement.

What we want to abstractly capture is that ee is implemented with involutive
operations, so employing it twice is the same as employing it zero times. However,
some gymnastics is required to state what “employing ee twice” means. Suppose we

119 Chapter 2. The Polarity Calculus

have a composable pair of substitutions

Θ Δ Γg f

and a term B : Tm(Θ, �[f] [g]). Then, as usual, we can form

Θ Γ B+ �.
f◦g ,+ B

Here’s the idea: if Δ and Γ are neutral, then we can use the ee maps to construct a
substitution of this same shape by a different, more convoluted path: first we form

Θ− Δ− B− �[f]− Δ− B+ �[f] [eΔ]−
g− ,− B ee

which works because B is an element of Tm(Θ, �[f] [g]) = Tm(Θ−−, �[f] [g−−]−−). If
we take the variable term v+ : Tm(Δ− B+ �[f] [eΔ]−, �[f] [eΔ] [p+]−) and transport it
along this substitution, we get

v+ [ee] [g− ,− B] : Tm(Θ−, �[eΓ] [(f ◦ g)−]−)

(see Figure 2.13). This has the right shape to be used as the term in a negative pairing:

Θ Γ B− �[e] .f◦g ,− v+ [ee] [g− ,− B]

At last, we can compose this with ee to get a substitution into Γ B+ �, as desired. Our
assertion is that this is equal to the original (f ◦ g ,+ B).

Proposition 2.3.23. In the category model, the following equation holds for allΘ : Con,
Δ, Γ : NeutCon, g : Sub Θ Δ, f : Sub Δ Γ, � : Ty Γ and B : Tm(Θ, �[f] [g]),

ee ◦ (f ◦ g ,− v+ [ee] [g− ,− B]) = (f ◦ g ,+ B).

Θ Γ B+ �

Γ B− �[e]

f ,+ B

(f◦g ,− v+ [ee] [g− ,− B]) ee

As we’ll see momentarily, this statement proves that − − C ′ = C ′, but is general
enough to be useful in other proofs too.

When introducing a new construct which operates on contexts, we have to ax-
iomatize its interaction with the existing machinery, like p, v, q, and pairing. We
can understand Proposition 2.3.9 as characterizing ee’s interaction with the projection
substitutions p. There’s not an obvious way to axiomatize how ee interacts with v and
pairing, but we have achieved that to some extent with the above law. However, for
some of the proofs we want to do, that’s still not quite enough. The following law,
characterizing how ee interacts with the weakening operations q and q−, will also help.

2.3. Neutrality 120

(g− ,− B) : Sub Θ− (Δ− B− �[f]−)
ee ◦ (g− ,− B) : Sub Θ− (Δ− B+ �[f] [eΔ]−)

v+ [ee] [g− ,− B] : Tm(Θ−, �[f] [eΔ] [p+] [ee] [g− ,− B]−)
�[f] [eΔ] [p+] [ee] [g− ,− B]− = �[f] [eΔ] [g]− = �[eΓ] [f−] [g−]−

Figure 2.14: Types of some of the expressions appearing in Proposi-
tion 2.3.23.

Proposition 2.3.24. For every Γ : NeutCon and � : Ty Γ in the category model, the
following square commutes.

Γ− B− � Γ B− �[e]

Γ− B+ �[e] Γ B+ �

q− (e)

ee ee

q (e)

With that, we collect all these observations about ee into an abstract model notion.
There are, in principle, various ways to do this. In [NA24], we asserted both ee and
term-negation as primitives, including − − C ′ = C ′ and a version of Corollary 2.3.28
as axioms. In the present work, we instead assert just ee with the above properties,
from which we can define term-negation (as we did in Definition 2.3.18) and prove the
salient properties (Corollary 2.3.28, Theorem 2.3.29, Theorem 2.3.30). We don’t make
any claim of completeness: there may very well be properties of the ee maps in the
category model which are not provable from the presentation given here, but which are
necessary for useful constructions in polarized and directed type theory. Only further
work in the theory will reveal what these properties might be.

Definition 2.3.25. A (unary) neutral-polarized CwF is a PCwF with
• a sub-collection of neutral contexts NeutCon ↩→ Con and
• a sub-presheaf of neutral types NeutTy ↩→ Ty

such that
• the empty context is neutral, • : NeutCon;
• the context extension Γ B+ � of Γ : NeutCon by � : NeutTy Γ is a neutral
context;

• NeutCon is closed under isomorphism; and
• for every Γ : NeutCon, there is an isomorphism

eΓ : Γ− � Γ

where
– e−1Γ = e−Γ = eΓ− and

121 Chapter 2. The Polarity Calculus

– eΓ ◦ f− = f ◦ eΔ for any Δ : NeutCon and f : Sub Δ Γ;
• for every Γ : NeutCon and � : Ty Γ, there is an isomorphism

ee : Γ B− �[e] � Γ B+ �

such that
– p+ ◦ ee = p−,
– ee ◦ q−(4Γ;�[e]) = q(4Γ;�) ◦ ee, and
– for all Θ : Con, Δ, Γ : NeutCon, g : Sub Θ Δ , f : Sub Δ Γ, � : Ty Γ and
B : Tm(Θ, �[f] [g]),

ee ◦ (f ◦ g ,− v+ [ee] [g− ,− B]) = (f ◦ g ,+ B). (2.3.26)

Lemma 2.3.27. Given Γ : NeutCon and C ′ : Tm(Γ, �) in any NPCwF,

−(C ′[e]) = (−C ′) [e] .

Proof. First, observe that q(eΓ) is the inverse of q(eΓ−):

q(eΓ) ◦ q(eΓ−) = (eΓ ◦ p+ ,+ v+) ◦ (eΓ− ◦ p+ ,+ v+)
= (eΓ ◦ p+ ◦ (eΓ− ◦ p+ ,+ v+) ,+ v+ [(eΓ− ◦ p+ ,+ v+)])
= (eΓ ◦ eΓ− ◦ p+ ,+ v+)
= (idΓ ◦ p+ ,+ v+)
= (p+ ,+ v+)
= id

and likewise for the other identity, and likewise q−(4Γ) and q−(4Γ−) are inverses.
Next, for C ′ : Tm(Γ, �), observe that the two substitutions from Γ− to Γ−B−� are

equal:
(idΓ− ,− C ′) = q−(eΓ−) ◦ (idΓ ,− C ′[eΓ]) ◦ eΓ

by:

(idΓ− ,− C ′) = (eΓ− ,− C ′[eΓ]) ◦ eΓ
= (eΓ− ◦ p− ,− v−) ◦ (idΓ ,− C ′[eΓ]) ◦ eΓ
= q−(eΓ−) ◦ (idΓ ,− C ′[eΓ]) ◦ eΓ .

2.3. Neutrality 122

This is all depicted in the following commutative diagram.

Γ B+ � Γ− B+ �[e]

Γ B− �[e] Γ− B− �

Γ Γ−

q (eΓ−)

q (eΓ)

q− (eΓ−)

ee

q− (eΓ)

ee

eΓ−=e−Γ
idΓ ,− C ′ [eΓ]

eΓ

idΓ− ,− C ′ [eΓ]

Write (★) for the commutativity of the lower square (which was proved above),
and (★★) for the commutativity of the upper square (which is one of the defining
properties of ee given in Definition 2.3.25, plus the above observation about the q’s
being inverses).

The proof of the claim is done by taking the definition of term negation (Defi-
nition 2.3.18) and moving across this diagram: −(C ′[eΓ]) is the variable term in the
top-right, v+ : Tm(Γ− B+ �[e], �[e] [p]), substituted down to Γ− along the right. On
the other hand, (−C ′) [eΓ] is the variable term in the top-left, v+ : Tm(Γ B+ �,�[p]),
substituted down the left to Γ (obtaining −C ′), and then substituted across eΓ into Γ.
These are equal by the commutativity of the diagram:

−(C ′[eΓ]) = v+ [ee] [idΓ− ,− C ′]
= v+ [ee] [q−(eΓ−)] [idΓ ,− C ′[eΓ]] [eΓ] (★)
= v+ [q(eΓ−)] [ee] [idΓ ,− C ′[eΓ]] [eΓ] (★★)
= v+ [ee] [idΓ ,− C ′[eΓ]] [eΓ]
= (−C ′) [eΓ] .

The penultimate step uses that q(eΓ) := (eΓ ◦ p ,+ v+), so v+ [q(eΓ)] = v+.

Corollary 2.3.28. For any Δ, Γ : NeutCon and f : Sub Δ Γ and B : Tm(Δ, �[f]), the
following triangle commutes.

Δ Γ B+ �

Γ B− �[e]

f ,+ B

f ,− (−B) [eΔ] ee

123 Chapter 2. The Polarity Calculus

Proof. Apply Equation 2.3.26 with Θ := Δ and g := idΔ. This tells us that

(f ,+ B) = ee ◦ (f ,− v+ [ee] [id ,− B]).

The v+ [ee]id ,− B term almost looks like the negation of a term, but missing a substi-
tution by e. To express it as a negation, we write

(f ,+ B) = ee ◦ (f ,− v+ [ee] [id ,− B [eΔ] [eΔ−]]),

so we can say
(f ,+ B) = ee ◦ (f ,− −(B [eΔ])) .

Then we can replace −(B [eΔ]) by (−B) [eΔ], by Lemma 2.3.27 (since Δ : NeutCon),
and we have the claim.

Theorem 2.3.29. In an arbitrary NPCwF, term-negation is involutive:

− − C ′ = C ′.

Proof.

− − C ′ := v+ [ee] [id ,− (−C ′) [e]] (Defn.)
= v+ [id ,+ C ′] (Corollary 2.3.28)
= C ′

Theorem 2.3.30. For any f : Sub Δ Γ between neutral contexts Δ, Γ : NeutCon, and
any term C ′ : Tm(Γ, �),

(−C ′) [f] = −(C [f]) .

Proof.

(−C ′) [f] = v+ [ee] [id ,− C ′[eΓ]] [f]
= v+ [ee] [f ,− C ′[eΓ ◦ f−]]
= v+ [ee] [f ,− C ′[f] [eΔ]]
= v+ [ee] [f ,− (−(−(C ′[f]))) [eΔ]] (Theorem 2.3.29)
= v+ [f ,+ −(C ′[f])] (Corollary 2.3.28)
= −(C ′[f])

Finally, let us note that Corollary 2.3.28 allows us to restate Proposition 2.3.13 in
the following nice form.

2.3. Neutrality 124

Remark 2.3.31. In any NPCwF supporting Σ-types, we can define the Pair− and
Unpair− functions of Proposition 2.3.13 as the composite of the other three sides of
the following square.

Tm(Γ, Σ��) Tm(Γ, (Σ��)−)

(B′ : Tm(Γ, �)) × Tm(Γ, � [id ,+ B′]) (B : Tm(Γ, �−)) × Tm(Γ, � [id ,+ −B])

) ′ ↦→−) ′

Unpair

−)←[)

Unpair−

(B′,C ′) ↦→(−B′,−C ′)

Pair

(−B,−C)←[(B,C)

Pair−

Analogously to Definition 1.2.15, write pr−1 (() and pr−2 (() for the two components of
Unpair−(():

(: Tm(Γ, (Σ��)−)
pr−1 (() : Tm(Γ, �

−)
(: Tm(Γ, (Σ��)−)

pr−2 (() : Tm(Γ, � [id ,+ −pr
−
1 (()])

2.3.3 Phase Two+
But what about multi-variable functions? If we wanted to write a function of the
form �′[e] → �[e] → �, the same trick wouldn’t work: we don’t know that the
context Γ B− �′[e] is neutral, so we wouldn’t get ee as an isomorphism between
Γ B− �′[e] B− �[e ◦ p−−] and Γ B− �′[e] B+ �[p−]). What we need is a substitution

Γ B− �′[e] B− �[e ◦ p−−] Γ B+ �′ B+ �[p+,�′] .
ee2

The category model supports this, so long as Γ is neutral and, crucially, both �′ and
� are types in Γ (i.e. � doesn’t depend on a variable of type �′). The object part of
this functor continues to be the identity, and the morphism part is analogous to the
definition of ee given above:

(W01, x′, x) ↦→ (W01, �′ W−101 x′, � W−101 x).

This satisfies the analogous properties to the ee introduced above. For instance, the
following square commutes.

Γ B− �′[e] B− �[e ◦ p−−] Γ B+ �′ B+ �[p+]

Γ B− �′[e] Γ B+ �′

ee {�′,�}

p− p+

ee {�′}

(2.3.32)

As here, we’ll begin view ee as a family of isomorphisms indexed over lists of types:
the binary version on the top for �′, �, and the unary version on the bottom for just �′;
we’ll make this precise shortly.

125 Chapter 2. The Polarity Calculus

We can also perform the analogous construction to Proposition 2.3.23: as there,
suppose g : Sub Θ Δ and f : Sub Δ Γ with Δ, Γ neutral, and B′ : Tm(Θ, �′[f] [g]),
B : Tm(Θ, �[f] [g]). Then we can take the positive route from Θ to Γ B+ �′ B+ �[p],
i.e. form the substitution

(f ◦ g ,+ B′ ,+ B) : Sub Θ (Γ B+ �′ B+ �[p]).

But we can also take the route involving the binary ee: observe that we have

Θ− Δ− B− �′[f]− B− �[f] [p+]−

Δ− B+ �′[f] [e]− B+ �[f] [e] [p+]

(g− ,− B′ ,− B)

ee

where the ee on the right is the one for the neutral context Δ− and types �′[f] [eΔ]−
and �[f] [eΔ]− (check that �[f] [eΔ]− [eΔ−] [p−−] = �[f] [p+]−). Then we can form the
terms

v1 [ee] [g− ,− B′ ,− B] : Tm(Θ−, �′[eeΓ] [(f ◦ g)−]−)
v0 [ee] [g− ,− B′ ,− B] : Tm(Θ−, �[eeΓ] [(f ◦ g)−]−)

and thus it makes sense to assert

(f ◦ g ,+ B′ ,+ B) = ee ◦ (f ◦ g ,− v1 [ee] [g− ,− B′ ,− B] ,− v0 [ee] [g− ,− B′ ,− B])
(2.3.33)

With this binary ee in hand, we can reason effectively about 2-variable functions.

Proposition 2.3.34. Given �, �,� : Ty Γ for Γ : NeutCon with ee2 as described above,
there is an isomorphism

Tm(Γ, (� × �) [e] → �) � Tm(Γ, �[e] → � [e] → �).

Proof. We have the chain of isomorphisms

Tm(Γ, (� × �) [e] → �)
� Tm(Γ B+ (� × �),� [p+]) (app+ & lam+)
� Tm(Γ B+ � B+ � [p+],� [p+ ◦ pair]) (_[pair] & Σ - elim)
� Tm(Γ B− �[e] B− � [e ◦ p−−],� [p+] [pair] [ee]) (_[ee] and _[ee−1])
= Tm(Γ B− �[e] B− � [e ◦ p−−],� [p− ◦ p−]) (★)
� Tm(Γ B− �[e], (� [e] → �) [p−]) (lam & app)
� Tm(Γ, �[e] → � [e] → �) (lam & app)

2.3. Neutrality 126

where (★) comes from the equality

p+,�×� ◦ pair ◦ (ee {�, �}) = p+,� ◦ p+,� [p+] ◦ (ee {�, �}) (Definition 2.2.16)
= p+,� ◦ (ee {�}) ◦ p−,� [e◦p−−] (Equation 2.3.32)
= p−,�[e] ◦ p−,� [e◦p−−] (Proposition 2.3.9)

So, at least for the purposes of writing non-dependent functions, we have an analo-
gous construction to Definition 2.3.10 for 2-variable functions: we can write a function
of shape �[e] → � [e] → � by supplying a term 2 : Tm(Γ B+ � B+ � [p],� [p+ ◦ p+]),
substituting it by the binary ee, and then applying the original lambda abstraction oper-
ator twice. Note that we do rely on both � and � being types in Γ here: we (apparently)
don’t have a similar ee for when � : Ty(Γ B+ �), and so this technique doesn’t permit
writing dependent functions—if we want to write something of the form Π(�,Π(�,�)),
then we have to deal with the variance of �’s dependence on �.

What about 3-variable functions? And 4-variable functions? We make the following
definitions to generalize the above specification of ee to arbitrary arity.

Definition 2.3.35. A (positive) flat telescope in context Γ is a list of types in Γ:

Tel♭ Γ := List(Ty Γ).

Rather than the customary notation for lists, where new elements are added on the
left by an operator cons, we’ll instead write them with new elements added on the
right by an operator snoc, i.e. Tel♭ Γ is generated by

nil : Tel♭ Γ

snoc : Tel♭ Γ → Ty Γ → Tel♭ Γ.

Given Ts : Tel♭ Γ and f : Sub Δ Γ, write Ts[f] : Tel♭ Δ for the result of substitut-
ing every type in Ts by f :

nil[f] := nil

(snoc Ts T) [f] := snoc Ts[f] T[f] .

Likewise, define Ts− to be the element-wise negation of the types in Ts.

Definition 2.3.36. The context extension operator B+ of any CwF can be lifted to
an operation extending a context Γ by a flat telescope in Γ.

127 Chapter 2. The Polarity Calculus

pseudoAgda

⊲⁺ : (Γ : Con) → List(Ty Γ) → Con
p+∗ : {Γ : Con} → (Ts : List(Ty Γ)) → Sub (Γ ⊲⁺ Ts) Γ
Γ ⊲⁺ nil = Γ
Γ ⊲⁺ (snoc Ts T) = (Γ ⊲⁺ Ts) ⊲⁺ T[p+∗ (Ts)]
p+∗ nil = id Γ
p+∗ (snoc Ts T) = (p+∗ Ts) ◦ (p+ {Γ=Γ⊲⁺Ts} {A=T[p+∗ (Ts)]})

Definition 2.3.37. Given any Γ and Ts : Tel♭(Γ−), we can define the negative exten-
sion of Γ by Ts, as follows.

pseudoAgda

⊲− : (Γ : Con) → List(Ty Γ−) → Con
p₋∗ : {Γ : Con} → (Ts : List(Ty Γ−)) → Sub (Γ ⊲− Ts) Γ
Γ ⊲− nil = Γ
Γ ⊲− (snoc Ts T) = (Γ ⊲− Ts) ⊲− T[(p₋∗(Ts))−]
p₋∗ nil = id Γ
p₋∗ (snoc Ts T) = (p₋∗ Ts) ◦ (p₋ {Γ=Γ⊲−Ts} {A=T[(p₋∗ (Ts))−]})

Definition 2.3.38. Given Ts : Tel♭ Γ, write Tms(Γ, Ts) for the set of terms of Ts:

Tms(Γ, nil) := {★}
Tms(Γ, snoc Ts T) := Tms(Γ, Ts) × Tm(Γ, T).

Given f : Sub Δ Γ and ®A : Tms(Γ, Ts), define ®A [f] : Tms(Δ, Ts[f]) by element-wise
substitution by f .

When = + 1 = |Ts|, write ®v+ for

(v=, v=−1, . . . , v0) : Tms(Γ B+ Ts, Ts[p∗+]) .

Definition 2.3.39. Given f : Sub Δ Γ, Ts′ : Tel♭ Γ, and ®B : Tms(Δ, Ts′[f]), define

(f ,+ ®B) : Sub Δ (Γ B+ Ts′)

by
(f ,+ (B1, . . . , B=)) := (f ,+ B1 ,+ . . . ,+ B=).

Similarly, given f : Sub Δ Γ, Ts : Tel♭(Γ−), and ®C : Tms(Δ−, Ts[f−]−), define

(f ,− ®C) : Sub Δ (Γ B− Ts).

2.3. Neutrality 128

Proposition 2.3.40 (Ladder Isomorphisms in Category Model). For any groupoid Γ
and any list Ts : Tel♭ Γ, there is an isomorphism in the category model

ee {Ts} : Γ B− Ts[e] � Γ B+ Ts

such that
• ee {nil} = id Γ
• for all T : Ty Γ, the following square commutes.

Γ B− (snoc Ts T) [e] Γ B+ (snoc Ts T)

Γ B− Ts Γ B+ Ts

ee {snoc Ts T}

p−,T[e] p+,T

ee {Ts}

(2.3.41)

• for every Ts, the following square commutes;

Γ− B− Ts Γ B− Ts[e]

Γ− B+ Ts[e] Γ B+ Ts

q− (e;Ts)

ee {Ts[e]} ee {Ts}

q (e;Ts)

(2.3.42)

• for all Θ : Con, Δ, Γ : NeutCon, g : Sub Θ Δ , f : Sub Δ Γ, and
®B : Tms(Θ, Ts[f] [g]),

(ee {Ts}) ◦ (f ◦ g ,− ®v+ [ee {(Ts[f] [e])−}] [g− ,− ®B]) = (f ◦ g ,+ ®B). (2.3.43)

We call these the “ladder isomorphisms” in reference to Equation 2.3.41: the ee’s
are the rungs of the ladder, with the positive and negative p’s as the sides; this was
depicted as a triangle in Proposition 2.3.9 because the bottom rung (ee {nil}) is the
identity morphism on Γ. It’s unclear whether the other properties, Equation 2.3.42
and Equation 2.3.43, are practically useful outside the unary case discussed above; we
include them simply for the sake of uniformity.

At last, this supplies us with our full notion of NPCwF.

Definition 2.3.44. A neutral-polarized CwF is a PCwF with
• a sub-collection of neutral contexts NeutCon ↩→ Con and
• a sub-presheaf of neutral types NeutTy ↩→ Ty

such that
• the empty context is neutral, • : NeutCon;
• the context extension Γ B+ � of Γ : NeutCon by � : NeutTy Γ is a neutral
context;

• NeutCon is closed under isomorphism; and

129 Chapter 2. The Polarity Calculus

• for every Γ : NeutCon, there is an isomorphism

eΓ : Γ− � Γ

where
– e−1Γ = e−Γ = eΓ− and
– eΓ ◦ f− = f ◦ eΔ for any Δ : NeutCon and f : Sub Δ Γ;

• for every Γ : NeutCon and every Ts : Tel♭ Γ, an isomorphism

ee {Ts} : Γ B− Ts[e] � Γ B+ Ts

such that
– ee {nil} = id Γ;
– for all T : Ty Γ, the following square commutes;

Γ B− (snoc Ts T) [e] Γ B+ (snoc Ts T)

Γ B− Ts Γ B+ Ts

ee {snoc Ts T}

p−,T[e] p+,T

ee {Ts}

(2.3.45)

– for every Ts, the following square commutes;

Γ− B− Ts Γ B− Ts[e]

Γ− B+ Ts[e] Γ B+ Ts

q− (e;Ts)

ee {Ts[e]} ee {Ts}

q (e;Ts)

(2.3.46)

– for all Θ : Con, Δ, Γ : NeutCon, g : Sub Θ Δ , f : Sub Δ Γ, and
®B : Tms(Θ, Ts[f] [g]),

(ee {Ts}) ◦ (f ◦ g ,− ®v+ [ee {(Ts[f] [e])−}] [g− ,− ®B]) = (f ◦ g ,+ ®B).
(2.3.47)

There’s one important caveat with this definition: it’s not a GAT. The issue is that
there aren’t finitely-many components: in order to introduce the ladder isomorphisms
(and assert their properties), we must quantify over flat telescopes, which are not an
element of a previous sort but lists of elements of a previous sort. There’s no machinery
in the definition of ‘GAT’ to be able to do this; we must pass to indexed GATs/QIIT
signatures. We can do it with just one metatheoretic set—the natural numbers—by
quantifying over the length of the flat telescope, but for full generality it seems we
do need at least that. Perhaps some clever encoding as a GAT could exist, but by
inspection it certainly seems impossible. Of course, this is a theoretical rather than
practical limitation: the notion of ‘NPCwF’ with the ladder isomorphisms specified for

2.3. Neutrality 130

only flat telescopes of length less than, say, one million is a GAT. For practically all the
constructions in the present work, the unary NPCwF notion given in Definition 2.3.25
is adequate.15

15In [NA24], we didn’t even contemplate binary ee.

Chapter 3

Directed TypeTheory

We now turn to the central topic of our study: hom-types. These types are to furnish a
directed notion of equality, a directed analogue of the identity types characteristic of
(undirected) Martin-Löf Type Theory. To guide our analysis, it is helpful to consider
what the judgment 5 : Tm(Γ,Hom(C, C ′)) is supposed to mean. In particular, we want
to interpret our theory’s rejection of the following principles.

• Symmetry: as we’ve discussed, undirected type theories are characterized by
the symmetry of their identity-types: from a term of Id(C, C ′), obtain a term of
Id(C ′, C). We distinguish our theories (and other theories) as directed in rejecting
symmetry: Hom(C, C ′) could be inhabited, but Hom(C ′, C) could be uninhabited.
Any interpretation of what hom-types mean will need to explain this fact.

• Uniqueness of Homs Principle: how do we make sense of the fact that, in
models like the category model, the directed analogue of the uniqueness of identity
principle fails? That is, what does it mean for the hom type Hom(C, C ′) to contain
multiple, distinct inhabitants?

As with undirected type theory, we can give several compelling answers to this question,
which will help illuminate the shape of our eventual theory

• Category interpretation: our predominant understanding so far has been that
we wish to endow our types with the synthetic structure of a category. The
terms furnish the synthetic objects, and we must complete the picture by giving
synthetic hom-sets between the objects. As discussed, this is simply the directed
analogue of the well-established interpretation of types in undirected type theory
as representing (higher) groupoids.
In this view, the failure of UHP amounts to the fact that not all categories are
preorders; that is, a given hom-set in a category can contain numerous elements—
distinct, parallel arrows. It’s no wonder, then, that the preorder model will
validate UHP, the same way that the setoid model validates UIP.

• Homotopy interpretation: the keen insight of Voevodsky was that the homo-
topy types of algebraic topology could literally be types in the computer-scientific

132

sense; upon this rock, homotopy type theorists have built their discipline. Though
it takes considerable work to precisely interpret type theory in homotopy spaces,
the basic intuition is straightforward: the terms of a type are the points of a space,
the terms of type Id(C, C ′) are paths in the space from C to C ′, paths between those
paths are homotopies, and so on into arbitrary dimensions.
With directed type theory, we simply add a direction onto these paths and ho-
motopies: a directed path 5 , i.e. a term of type Hom(C, C ′), will take you from
C to C ′, but there might not be a path back. Our rejection of symmetry opens
the possibility that Hom(C, C ′) might be inhabited but Hom(C ′, C) uninhabited.
Instead of giving a type theory corresponding to homotopy spaces, we are instead
giving a type theory corresponding to directed homotopy spaces (see e.g.).
UHP, in this view, is the assertion that all parallel directed paths are homotopic,
i.e. that there are no “holes” in our directed spaces. In rejecting this principle, we
allow our directed homotopy spaces to have holes in them, where the meaning of
“having a hole” is formally cashed out in the existence of distinct directed paths
with the same start-point and end-point, which “go around” the hole on different
sides.

• Computational interpretation: we can understand directed paths, i.e. hom-
terms, as reflecting the temporal evolution of a computer process: a term 5 of
Hom(C, C ′) means that the computation could start at C and result in C ′, by way of
the evaluation trace 5 . In much the same way that undirected identity types make
metatheoretic judgmental equality tangible within the object theory—and the
intensional/extensional distinction indicates how exactly judgmental equality is so
rendered—we can understand directed hom-types as internalizing the reduction
relation of the metatheory.
Our denial of UHP has an intriguing application: the analysis of concurrency. As
thoroughly treated in , careful steps must be taken when dealing with concurrent
computer processes to ensure that processes don’t attempt to simultaneously
modify the same memory location, lest the computational results become unpre-
dictable; this is managed with a system of “locking” and “freeing” of resources. A
“hole” in our directed homotopy space corresponds to a deadlock, when two pro-
cesses lock the same resource, preventing either from utilizing it. Any successful
evaluation trace must go around the hole, i.e. schedule operations between the
processors that avoids deadlocks. The existence of holes, i.e. the fact that our
directed homotopy spaces have nonzero dimension, corresponds to the existence
of multiple concurrent processors whose operation can be scheduled in different
ways; our denial of UHP thus represents the presence of concurrency in our
evaluation system.

• Logical-Temporal interpretation: More abstractly,1 we can understand hom-
types as encoding an equality relation which is modulated by time: an inhabitant
of Hom(C, C ′) is a witness to the assertion that C becomes C ′. Such a relation is
inherently directed, because time itself is directed : C computes to C ′ over time,
and to go back would involve turning time back. Just like how a directed path is
a path with direction, we can think of a directed equality as an equality with a
temporal order : it is not just the case that 7 + 5 is 12, but rather that 7 + 5 becomes

1Or, perhaps it would be better to say, more philosophically.

133 Chapter 3. Directed Type Theory

12 through time.
Though the category interpretation is our primary understanding in the present work,
directed type theory should properly engage with all of these: not only do each of these
perspectives provide a different way of intuiting what each principle of directed type
theory means, but also each of them potentially serves as a source of new ideas to be
transported to the others, utilizing directed type theory as the rosetta stone between
them.

Let us conclude this introduction with the following observation: in the above
interpretations, we were ambiguous about whether undirected equality was stronger
or weaker than directed equality. In the case of categories and groupoids, it seems
that the directed notion is weaker: undirected identity is interpreted as isomorphism,
which consists of directed equality, i.e. morphisms, in either direction. In the other
interpretations, directed equality seemed to be more than undirected equality: directed
equality is equality, but with a direction, an orientation, a temporal order. In the present
work, we won’t embark on a precise comparison of these two possible relationships
between identity types and hom-types—identity as the core of directed equality versus
identity as the closure of directed equality—but we will speculate somewhat in the final
chapter about what such a treatment might look like. In particular, we’ll find that the
category model allows us to take both the core �0 and the localization �∗ of a type �,
which capture these two notions of identity generated by the system of hom-types on
the directed type �. Depending on the intended application, one might want directed
type theory with one notion of identity or the other, or both.

3.1 Directed Equality Types
Let’s develop hom-types in the category model. Once again, our methodology will
be to (1) examine the groupoid model’s definition of the undirected notion, in this
case identity types; (2) to solve the “polarity problem”, i.e. appropriately annotate the
contexts, types, etc. with polarities so that the definition makes sense in the category
model (possibly in a neutral context); and then (3) articulate the resulting structure as
an extension of the GAT CwF.

The formation rule of identity types gives rise to a relatively simple polarity problem.
Recall that the type Id(C, C ′) is interpreted in the groupoid model as follows.

Id : {Γ : Con}{� : Ty Γ}(C C ′ : Tm(Γ, �)) → Ty Γ

Id(C, C ′) W := (� W) [C (W), C ′(W)]
Id(C, C ′) W01 : (� W0) [C (W0), C ′(W0)] ⇒ (� W1) [C (W1), C ′(W1)]
Id(C, C ′) W01 G0 := C ′(W01) ◦� W01 G0 ◦ (C W01)−1

For the object part, the set (� W) [C (W), C ′(W)] is regarded as a discrete groupoid, i.e. the
only morphisms are the identity morphism on each object. This doesn’t need to change
when we pass to the category model.2 As we see, there is only one use of the inverse

2Though, since discrete categories are inherently groupoids, hom-types in the category model will
always end up being neutral types themselves. We’ll make this explicit later in this section.

3.1. Directed Eqality Types 134

operation in this definition: in the morphism part, we must invert the morphism C (W01)
so that we can navigate around this square (in �(W1))

� W01 (C W0) C (W1)

� W01 (C ′ W0) C ′(W1)

C W01

� W01 G0

(C W01)−1

Id (C,C ′) W01 G0

C W01

and define Id(C, C ′) W01 G0 as required on the right. This is a shallow assumption of
invertibility: we don’t use the fact that Γ is a groupoid, only that �(W1) is. Accordingly,
we’ll make this suitable for the category model using the latter’s shallow polarity: if we
just require the term C to be of type �− instead of �, then its morphism part C (W01) will
go the desired direction.

We therefore follow [Nor19] and adopt the following Hom-formation rule.

Definition 3.1.1. Define the Hom-formation operation of the category model,
which is expressed in rule form as

Γ : Con C : Tm(Γ, �−) C ′ : Tm(Γ, �)
Hom� (C, C ′) : Ty Γ (Hom formation)

by the following.

pseudoAgda

Hom : {Γ : Con}{A : Ty Γ} → Tm(Γ, A−) → Tm(Γ, A) → Ty Γ

Hom(t,t’) : |Γ| → Cat
| Hom(t,t’) W | := (A W) [t W , t’ W]
(Hom(t,t’) W) [i , j] := (i = j)

Hom(t,t’) : (W ₀₁ : Γ [W ₀ , W₁]) → (Hom(t,t’) W ₀)⇒ (Hom(t,t’) W₁)
Hom(t,t’) W ₀₁ f₀ := t’(W ₀₁) ◦ A W ₀₁ f₀ ◦ t(W ₀₁)

Remark 3.1.2. Note that the hom-types in the category model are defined as a family
of discrete categories. So, if a context contains variables of hom-types, e.g.

Γ B+ � B Hom(C [p], v0) for some C : Tm(Γ, �−)

then the morphisms of this category will include meta-theoretic identity terms:(
Γ B+ � B+ Hom(C [p], v0)

)
[(W0, 00, G0), (W1, 01, G1)]

= (W01 : Γ [W0, W1]) × (001 : (� W1) [� W01 00, 01]) × (001 ◦� W01 G0 ◦ C (W01) = G1).

It will often be convenient to “singleton contract” such expressions to remove
the occurrence of the identity. That is, instead of taking morphisms to be triples

135 Chapter 3. Directed Type Theory

(W01, 001, G01) where G01 is a proof in the metatheory that 001 ◦� W01 G0 ◦ C (W01) = G1,
we’ll instead understand the morphisms in the category to be pairs

(W01, 001) :
(
ΓB+�B+Hom(C [p], v0)

)
[(W0, 00, G0), (W1, 01, 001◦� W01 G0◦C (W01))] .

Therefore a type" : Ty(Γ B+ � B Hom(C [p], v0)) will have shape

"#1 : (W : |Γ |) → (0 : |� W |) → (G : (� W) [C W, 0]) → Cat

"#2 : (W01 : Γ [W0, W1]) → (001 : (� W1) [� W01 00, 01]) →(
"#1(W0, 00, G0) ⇒ "#1(W1, 01, 001 ◦� W01 G0 ◦ C (W01))

)
And a term � : Tm(Γ B+ � B Hom(C [p], v0), ") will have shape

�#1 : (W : |Γ |) → (0 : |� W |) → (G : (� W) [C W, 0]) → |" (W, 0, G) |
�#2 : (W01 : Γ [W0, W1]) → (001 : (� W1) [� W01 00, 01]) →

(" (W1, 01, 001 ◦� W01 G0 ◦ C (W01))) [
" (W01, 001) (�#1(W0, 00, G0)),
�#1(W1, 01, 001 ◦� W01 G0 ◦ C (W01))

] .

Besides being required by our semantics, these polarity annotations—negative for
the domain, positive for the codomain—are desirable for our syntax. For one, they seem
to provide a guarantee that our directed type theory will not “collapse” into undirected
type theory (as described in the introduction to chapter 2): we know that a term
5 : Tm(Γ,Hom� (C, C ′)) cannot generally be turned into a term 5 −1 : Tm(Γ,Hom� (C ′, C))
because the latter is not even well-formed (C ′ is not a term of �− and C is not a term
of �).3 Now, this manner of preventing symmetry will shortly turn out to be far too
crude—sometimes we do want hom-terms to have inverses, so a theory that syntactically
forbids such a possibility isn’t much good. But even after we refine our theory to account
for this, the positive- and negative-type annotations will still turn out to play a vital
role in preventing symmetry from being provable in general.

We can see that the syntactic restrictions of hom-types in arbitrary contexts are too
strong by considering how to carry out hom-introduction. In undirected type theory,
identity-introduction asserts the existence of a term reflC of type Id(C, C) witnessing
the reflexivity of identity. This is what we want in directed type theory too: in order
to think of our types as synthetic categories, we must have identity morphisms of the
form Hom(C, C) for every object (i.e. term) C ; in order to think of our types as directed
homotopy spaces, we must have the trivial directed path; in order to think of hom-types
as temporally-modulated equality, we ought to include the degenerate case that every
term becomes itself in a process lasting zero seconds. But the reflexivity assertion is
forbidden by our typing discipline as it currently stands: C cannot serve as both the
domain and codomain, as it would need to be a term of �− and �. So we have a new
polarity problem, which is much more imposing than the polarity problem for Hom.

3Note that C ′ and C do have the right shape for the �−-hom type Hom�− (C ′, C) to be well-formed. This
accords with our desire to think of �− as the opposite category of �.

3.1. Directed Eqality Types 136

Before presenting our general solution, let us note that this is no problem at all in
the empty context. Recall that a type � in the empty context is the same thing as a
category, and a term C : Tm(•, �) is the same thing as an object of �. It’s therefore no
trouble for a term to be both a term of� and�−, because the two have exactly the same
objects. So it suffices to define reflC : Tm(•,Hom� (C, C)) as just the identity morphism
on C , and everything works out fine. So the question is: how do we generalize this
solution beyond the empty context?

This is the point where our development of hom-types in the category model di-
verges from North’s. In order to type refl, she employs core types. The category model
supports another operation on types, which we’ll denote (_)0, defined in just the
same way as (_)−, but this time using the core groupoid operation (as an endofunc-
tor on Cat) instead of the (_)op endofunctor. That is, we can compose the functor
core : Cat⇒ Grpd which takes a category C to its maximal subgroupoid core(C) with
the inclusion Grpd⇒ Cat to get an endofunctor on Cat. This endofunctor—like the
(_)op endofunctor—induces an operation on the types of the category model, defined
by post-composition. Types of the form �0 have a very useful property: a term of
type �0 can be coerced into either a term of type � or into a term of type �−. This
solves the problem of refl’s polarity: just restrict the statement of reflC to only terms C
of type �0. Then Hom(C, C) is well-formed, because we coerce C into �− to fit into the
domain position and into� to fit into the codomain position. North goes on to state the
elimination rules for hom-types (i.e. directed path induction), and use them to prove a
transport law and a composition operation for hom-types.

North’s solution has the benefit of working in arbitrary contexts: by treating the
mixed-variance of refl as a shallow polarity problem (that is, solving it by restricting
the type to be groupoidal), there’s no need for deep polarity; indeed, North’s theory4

doesn’t include deep polarity at all. We, however, take an alternative approach: if we’re
willing to accept a restriction to neutral contexts, then we can employ the machinery
developed in section 2.3 to solve this polarity problem without the use of core types. If
we’re in a neutral context, any term can be coerced into the opposite type, so we can
take reflC to be a term of type Hom(C,−C) and proceed from there.

Definition 3.1.3. Define the Hom-introduction operation of the category model,
which is expressed in rule form as

Γ : NeutCon C : Tm(Γ, �−)
reflC : Tm(Γ,Hom(C,−C))

by the following.

4At least as stated in [Nor19].

137 Chapter 3. Directed Type Theory

Hom(C,−C) W01 (reflC W0) = (−C) W01 ◦� W01 (reflC W0) ◦ C (W01)
= (−C) W01 ◦� W01 idC W0 ◦ C (W01)
= � W01 (C W−101) ◦ id� W01 (C W0) ◦ C (W01)
= � W01 (C W−101) ◦ C (W01)
= C (W01 ◦ W−101)
= C (idW1)
= idC W1
= reflC W1

Figure 3.1: Calculation of the morphism part of refl. Recall that the
morphisms of the category Hom(C, C ′) W1 are identities.

pseudoAgda

refl : {Γ : NeutCon}{A : Ty Γ} → (t : Tm(Γ, A−)) → Tm(Γ, Hom(t,−t))

(refl t) : (W : |Γ|) → |Hom(t,−t) W |
refl t W := idt W

(refl t) : (W ₀₁ : Γ [W ₀ , W₁]) →
(Hom(t,−t) W₁) [Hom(t,−t) W ₀₁ (refl t W ₀) , refl t W₁]

refl t W ₀₁ := Figure 3.1

It’s worth remarking that both of these solutions generalize the construction in the
empty context: both coercions (North’s coercion from �0 to �− and �, and ours from �

to �−) do nothing to terms in the empty context, as the closed types (i.e. categories) �0,
�−, and� have precisely the same terms (objects). And it seems that our approaches can
be viewed as equivalent in any neutral context. If we include both the neutral-context
machinery and core types, then we can coerce between terms of � and �0 in a neutral
context as well. So the restriction that C be a term of �0 in order to come equipped with
reflC is no restriction at all, and the different possible Hom-introduction rules come into
alignment.

We choose to pursue the neutral-context approach—excluding any reference to
core types—because we are convinced that it’s essential to work in a neutral context
anyways. As covered in the previous chapter, the Π-types of the category model seem
practically useless in an arbitrary context, forbidding us from even forming the type
of the identity function (let alone performing meaningful work). Thus, the benefit that
North’s refl is stated in an arbitrary context is not compelling to us. Moreover, it’s
unclear how to work with negative and core types outside a neutral context anyways:
North doesn’t include any mechanism for actually obtaining terms of type �0 (unless
there’s one in the context) or for converting between � and �−, because these kinds

3.1. Directed Eqality Types 138

of operations depend critically on the context being neutral. To our understanding,
current work to extend North’s theory to one capable of synthetic category theory
(including Π-types) involves equipping it with a deep polarity calculus after all; we
suspect that a mature development of such a theory will overlap significantly with the
present work, and will ultimately need to make essential use of (something like) neutral
contexts. Given that, we find it more elegant (syntactically and semantically) to forego
core types in the statement of the introduction and elimination of hom-types, and to
embrace the restriction to neutral contexts.

This also clears the way for stating the elimination principle of hom-types, directed
path induction. In the directed setting, there are two ways of performing path induction:
a forwards path induction that proves a statement about arbitrary coslices by proving
it for refl, and a backwards path induction that does the same for slices. As we might
expect, these are dual to each other: doing slice path induction in � is the same thing
as doing coslice path induction in �−, and vice-versa. We’ll make this precise by just
introducing one of them—we’ve arbitrarily selected coslice path induction—and then in
the next section we’ll obtain the other as a consequence.

Following [HS95, Section 4.10], let’s consider this in the empty context of the
category model. Coslice path induction is based at a term C : Tm(•, �−), which is just
an object of the category �. A motive " for coslice path induction is a type family
depending on variables G′ of type � and D of type Hom(C, G′)). That is, it’s a functor

" : C/�⇒ Cat.

Then the principle of coslice path induction says that, to inhabit" abstractly over G′, D,
i.e. to construct a term in Tm(C/�,"), it suffices to supply some< : Tm(•, " [−C, reflC]),
i.e. an object of the category " (C, id). The reason why this works is that identity
morphisms are initial in the coslice category: given arbitrary C ′ and 5 , the following
triangle commutes.

C

C C ′

id 5

5

I.e. 5 is a coslice morphism (C, idC) → (C ′, 5). This gives us the ‘object part’ of our
desired term in Tm(C/�,"): just send (C ′, 5) to" 5 < : |" (C ′, 5) |. The morphism part
is defined analogously, just using the functoriality of " . This construction generalizes
to non-empty neutral contexts: everything is parametrized over some context Γ, but
the idea remains the same.

Definition 3.1.4 (Coslice Path Induction). Figure 3.2 constructs in the category
model an operation J+ of the form

Γ : NeutCon � : Ty Γ
C : Tm(Γ, �−) " : Ty(Γ B+ � B+ Hom(C [p], v0))

< : Tm(Γ, " [id ,+ −C ,+ reflC]
J+ < : Tm(Γ B+ � B+ Hom(C [p], v0), ") (Coslice Path Induction)

139 Chapter 3. Directed Type Theory

pseudoAgda

J⁺ : (t : Tm(Γ, A−))
→ (M : Ty (Γ ⊲⁺ A ⊲⁺ Hom(t[p], v₀)))
→ Tm(Γ, M[id ,+ −t ,+ reflₜ])
→ Tm(Γ ⊲⁺ A ⊲⁺ Hom(t[p], v₀), M)

(J⁺t,M m) : (W : |Γ|) → (a : |A W |) → (x : (A W) [t W , a]) → | M(W , a, x) |
(J⁺t,M m) W a x = M (idW , x) (m W) −− x = x ◦ A idW idtW ◦ t idW

(J⁺t,M m) : (W ₀₁ : Γ [W ₀,W₁])
→ (a₀₁ : AW₁ [A W ₀₁ a₀, a₁])
→ M(W₁, a₁, a₀₁ ◦ A W ₀₁ x₀ ◦ t(W ₀₁))[

M(W ₀₁,a₀₁) ((J⁺t,M m) W ₀ a₀ x₀),
((J⁺t,M m) W₁ a₁ (a₀₁ ◦ A W ₀₁ x₀ ◦ t(W ₀₁)))

]
(J⁺t,M m) W ₀₁ a₀₁ = M (idW1 , a₀₁ ◦ A W ₀₁ x₀ ◦ t(W ₀₁)) (m W ₀₁)

Figure 3.2: Construction of the J+-rule (coslice path induction) in the
category model.

satisfying the equation

(J+ <) [id ,+ −C ,+ reflC] =<. (Coslice V)

Remark 3.1.5. When the base point C and/or the motive " can be inferred from
context, we will omit them from the J+ subscript.

Sometimes when using Coslice Path Induction, we’ll use a motive" : Ty(ΓB+�)
that only depends on the codomain of the slice, not the hom-term itself; formally,
this is just doing coslice path induction with motive" [p]. The resulting term J+ <
is then a term in context Γ B+ � B+ Hom(C [p], v0), of type" [p].

Since this has the form of a logical rule, probably the most natural interpretation
with which to read this principle is the logical-temporal one. Under that reading, Coslice
Path Induction says that predicates like" are functorial in the future progress of our
base-point C : we can prove" (C ′, 5) for any “future” of C (some C ′ which C might become,
and an arbitrary process 5 by which C becomes C ′) just by proving it (supplying the
method<) for the “trivial future” (C is rendered as a “future state” trivially, −C , and the
process by which C becomes itself is the trivial process reflC). As C develops into C ′ by 5 ,
< develops into (J+ <) (C ′, 5) along with it. As Coslice V reminds us, if we instantiate
this to the trivial future, i.e. (J+ <) (−C, reflC), then we get back our input<: if C doesn’t
develop, then neither does<.

As with its undirected cousin, directed path induction will prove a powerful tool

3.1. Directed Eqality Types 140

for type-theoretic reasoning. As a first example, we can make good on the promise that
directed types are synthetic categories by constructing the composition operation among
hom-terms. For us, 5 and 6 will be said to be composable when the domain of 6 is the
negation of the codomain of 5 , i.e. 5 : Tm(Γ,Hom(C, C ′)) and 6 : Tm(Γ,Hom(−C ′, C ′′))
for some C : Tm(Γ, �−) and C ′, C ′′ : Tm(Γ, �). If this is so, then we can define their
composite 5 · 65 by path induction: 5 · refl−C ′ ought to be just 5 , and this suffices
to define 5 · 6 for arbitrary 6. This is done more precisely in Figure 3.3. Of course,
composition of hom-terms is an essential component of all the interpretations listed at
the top of the chapter.

• Category: composition of morphisms in the synthetic category: if the codomain
of 5 matches the domain of 6, then 5 · 6 is a morphism with the domain of 5 and
the codomain of 6.
As we’ll demonstrate as part of the proof of Proposition 3.2.2, the interpre-
tation of the term 5 · 6 in the category model indeed sends W : |Γ | to 6(W) ◦
5 (W) : |Hom(C, C ′′) W |. So, as with various constructs we’re adding to directed
type theory, this construction of synthetic composition is internalizing the actual
category-theoretic composition; these kinds of things happen when mathematical
objects give semantics for synthetic theories of themselves. We defer the proof
of the category laws for now, but we can already see that one unit law—that
5 · refl is 5—holds definitionally (by Coslice V), and the rest is easy directed path
induction.

• Homotopy: composition of directed paths: given a directed path from C to C ′ and
one from C ′ to C ′′, then they can be composed to get a directed path from C to C ′′.

• Computational: composition of evaluations: if C computes to C ′, and C ′ computes
to C ′′, then these computations can be stuck together, witnessing that C computes
to C ′′. If hom-types are understood as the internalization of the reduction relation
of the metatheory, then this internalizes that said relation is transitive.

• Logical-Temporal composition of ‘becoming’: if C becomes C ′ in some period of
time, and C ′ becomes C ′′ in some other period of time, then C becomes C ′′ in the
sum of those time periods.

The only oddity to make sense of is that our notion of ‘composability’ comes with
polarity annotations: as mentioned, what it means for the codomain of 5 to “match”
the domain of doesn’t mean that the former term and the latter term are the same—that
wouldn’t make sense in the polarity calculus—it means that one is the negation of the
other ; in the directed homotopy interpretation, C ′ can serve as the endpoint of the
directed path 5 , but we must recast it as −C for it to stand as the starting point of the
directed path 6; and so on.

Notice that Figure 3.3 is not a construction in the category model specifically; rather,
it defines composition in the syntax of directed type theory. To make precise what this
is, we introduce directed CwFs, an (indexed) GAT DCwF extending the (indexed) GAT
NPCwF. Like any indexed GAT, this admits an initial model, the syntax of directed
type theory. Thus, the construction of Figure 3.3 doesn’t just work in the category
model, but in any DCwF-algebra. For instance, in the preorder model, it encodes the
fact that the synthetic preorders of that model are indeed transitive. Here is our notion.

5Note that we switch to the diagrammatic order for writing compositions, as is frequently the
convention for working with identity types in undirected type theory.

141 Chapter 3. Directed Type Theory

Definition 3.1.6. A directed CwF (DCwF) is a NPCwF equipped with the following
structure:

• a type former

Hom : {Γ : Con}{� : Ty Γ} → Tm(Γ, �−) → Tm(Γ, �) → Ty Γ

which is stable under substitution:

Hom(C, C ′) [f] = Hom(C [f], C ′[f])

and such that the hom-types of neutral types are neutral;
• in any Γ : NeutCon, a term reflC : Hom(C,−C) for each term C : Tm(Γ, �−), also
stable under substitution by f : Sub Δ Γ for Δ : NeutCon; and

• a term former J+ as given in Definition 3.1.4, also appropriately stable under
substitution: for Δ, Γ : NeutCon and f : Sub Δ Γ,

J+(<[f]) = (J+ <) [q(f;�,Hom(C [p], v0))] J+ []

Notice that, unlike the stability-under-substitution properties for type-formers in
CwFs (the kind we considered in section 1.2), refl and J+ are only stipulated to be stable
under substitution between neutral contexts. It is, indeed, only with respect to such
substitutions that we can state stability-under-substitution. In the present work, we
don’t elaborate on what happens if, say, one forms reflC in a neutral context Γ, and then
substitutes that term along f : Sub Δ Γ where Δ is not neutral; the only such situation
which we’ll encounter presently (particularly in chapter 4) is where Δ is an extension of
Γ and f is the composition of the projection morphisms p. In this case, there’s no need
to characterize what reflC [p ◦ · · · ◦ p] is: we’ll ultimately be working in Γ anyways, and
so any instance of reflC [p ◦ · · · ◦ p] will eventually be substituted back into Γ by some
morphism of the form (id ,+ B1 ,+ . . . ,+ B=), giving us back reflC again. However, we
defer a careful consideration of this issue (and its possible impacts on the canonicity of
the system) to future work.

directedTT

Csl : {t : Tm(Γ, A−)} → Ty (Γ ⊲⁺ A)
Csl {t} := Hom(t[p], v₀)

_·v₀ : Tm(Γ, Hom(t,t’)) → Tm(Γ ⊲⁺ A ⊲⁺ Csl{−t’}, Hom(t[p ◦ p], v₁)
f ·v₀ := (J⁺−t′,Csl{t} f)

· : Tm(Γ, Hom(t,t’)) → Tm(Γ, Hom(−t’,t’’)) → Tm(Γ, Hom(t,t’’))
f · g := (f ·v₀) [id ,+ t’’ ,+ g]

Figure 3.3: Composition of hom-terms, in the syntax of directed type
theory.

3.1. Directed Eqality Types 142

Directed path induction also allows us to establish our principle of transport, which,
recall, was a reflection of the fibrancy of our model into the syntax. As nicely sum-
marized by [AN22], undirected transport realizes the principle of indiscernibility of
identicals, that identical terms can be used in place of each other, with equivalent results.
In the directed setting, this has the same intuition as the one given above for J+:6 if C
can become/be transformed into C ′, then the properties of C transform functorially into
properties of C ′. Thus, we replace the “the indiscernibility of identicals” with something
like “the analogy of transformables”—the word “analogy” here meaning that terms C
and C ′ connected by a directed equality do not necessarily have the same properties,
but that transport allows us to convert the properties of C into properties of C ′, mutatis
mutandis.

Definition 3.1.7. In the syntax of directed type theory, we have an operator

5 : Tm(Γ,Hom(C, C ′)) 1 : Tm(Γ, � [id ,+ −C])
tr� 5 1 := (J+ 1) [id ,+ C ′ ,+ 5] : Tm(Γ, � [id ,+ C ′])

This is the form of transport which will be more useful for our purposes. However,
with some extra effort, we can recover a version which is functorial in the term 1.

Definition 3.1.8. Let � : Ty(Γ B+ �) and C : Tm(Γ, �−) as before. Then recall the
identity function (Definition 2.3.11)

�� [id ,+ −C] : Tm(Γ, � [id ,+ −C] [e] → � [id ,+ −C]).

This is a term of type" [id ,+ −C ,+ refl] where

" := Π(� [id ,+ −C] [e] [p− ◦ p−], � [p+ ◦ p−]) : Ty(Γ B+ � B+ Hom(C [p], v0))

(see Figure 3.4 and Figure 3.5). Thus, for any C ′ : Tm(Γ, �) and 5 : Tm(Γ,Hom(C, C ′),
obtain

transport� 5 := (J+ �� [id ,+ −C]) [id ,+ C ′ ,+ 5] : Tm(Γ, � [id ,+ −C] → � [id ,+ C ′])
(3.1.9)

Let’s now return to a vital question for any putative directed type theory: why
doesn’t this collapse into undirected type theory? That is, what prevents our new J-rule
from being able to prove the invertibility of hom-terms? Now that we’re working in
neutral contexts, the type of symmetry is well-formed:

symm : Tm(Γ,Hom� (C, C ′)) → Tm(Γ,Hom� (−C ′,−C)) .

And, if we follow the usual definition of this operation in undirected type theory, it
seems like it might be possible: could we not just put

symm reflC := reflC : Tm(Γ,Hom(− − C,−C))
6Transport is, after all, just a specialization of directed path induction.

143 Chapter 3. Directed Type Theory

Γ B+ � B+ Hom(C [p], v0) B− � [id ,+ −C] [e] [p− ◦ p−]

Γ B+ � B+ Hom(C [p], v0) (Γ B+ � B+ Hom(C [p], v0))−

Γ B+ � Γ− B− �−

Γ Γ−

p−

p+ p−

p+ p−id ,+ −C id ,+ C ′

e

Figure 3.4: The contexts and substitutions involved in Definition 3.1.8.

" [id ,+ C ′ ,+ 5]
= (Π(� [id ,+ −C] [e] [p− ◦ p−], � [p+ ◦ p−])) [id ,+ C ′ ,+ 5]
= Π (� [id ,+ −C] [e] [p− ◦ p−] [(id ,+ C ′ ,+ 5)−]) (� [p+ ◦ p−] [q((id ,+ C ′ ,+ 5)−; . . .−)−])
= Π (� [id ,+ −C] [e] [p− ◦ p−] [id ,− C ′ ,− 5]) (� [p+ ◦ p−] [((id ,− C ′ ,− 5) ◦ p+ ,+ v0)−])
= Π (� [id ,+ −C] [e]) (� [p+ ◦ p−] [(id ,+ C ′ ,+ 5) ◦ p− ,− v0])
= Π (� [id ,+ −C] [e]) (� [p+] [id ,+ C ′ ,+ 5] [◦p−])
= Π (� [id ,+ −C] [e]) (� [id ,+ C ′] [p−])
= � [id ,+ −C] [e] → � [id ,+ C ′]

Figure 3.5: Substituting the motive " in Definition 3.1.8 with some
C ′ : Tm(Γ, �) and 5 : Tm(Γ,Hom(C, C ′)). Note that �� [id ,+ −C] has this
type when C ′ = −C and 5 = reflC ,

3.1. Directed Eqality Types 144

and then obtain symm 5 for arbitrary 5 by directed path induction? The reason this
does not work is subtle, but reveals itself if we try to write down the motive for this
putative directed path induction:

" := Hom�[p◦p] (−v1,−C [p ◦ p]).

This is not a valid type in context Γ B+ � B+ Hom(C [p], v0): we must negate the
variable v1, because it is a term of type �[p ◦ p] and the domain of a hom must be
negative. But the context ΓB+�B+Hom(C [p], v0) is not neutral, and therefore does not
permit term-negation; nor is Γ B+ � neutral, so we couldn’t replace −v1 with (−v0) [p]
either. This attempt at proving symmetry fails; two critical aspects of our polar typing
discipline—the polarity requirements of Hom formation and the neutrality requirement
for term-negation—have worked in tandem to make this a genuine directed type theory,
with hom composition provable by J but not symmetry. Of course, we haven’t shown
that there’s no proof of symm—that requires a metatheoretic argument, which we’ll
carry out at the end of this section.

Observe that if � is a neutral type, then Γ B+ � is a neutral context, and thus we
can write −v0 : Tm(Γ B+ �,�[p]−). Generally speaking, variables (or terms containing
them) can be negated whenever their type is a neutral type in a neutral context. For
instance, in context ΓB+�2 B+�1 [p] B+�0 with Γ neutral and �1 : NeutTy Γ, we can
negate the variable v1 regardless of whether �2 and �0 are neutral: just regard −v1 as
an abbreviation for

(−v0) [q(p�2)] [p�0] : Tm(Γ B+ �2 B
+ �1 [p] B+ �0, �1 [p ◦ p ◦ p])

where the negation of v0 happens in Γ B+ �1, which is neutral. In the next chapter, we
adopt an informal principle codifying this practice.

So, returning to symmetry, if � : NeutTy Γ, then the construction of symm for the
hom-types of� works because we can negate the relevant variable—see Figure 3.6. This
makes good on the idea that neutral types are synthetic groupoids; if� is neutral (which,
recall, means that it’s interpreted in the category model as a family of groupoids), then
we can prove internally that it’s a groupoid. We therefore adopt the following notation.

Remark 3.1.10. If � is a neutral type, then we’ll write Id(C, C ′) for the hom-type
Hom(C, C ′). We will also avoid making negations explicit, e.g. writing reflC : Id(C, C)
instead of Id(C,−C), when dealing with neutral types.

Remark 3.1.11. Let us briefly touch on a point brought up in the beginning of this
chapter. Suppose � is a type, which we do not assume to be neutral. Then we can
talk about directed equality of terms of type �, i.e. form the type Hom(C, C ′) for
C : Tm(Γ, �−) and C ′ : Tm(Γ, �). But we cannot speak of undirected equality between
terms of type �, that is, the type Id(C, C ′) is meaningless. This type only means
something when � is neutral, in which case it’s notation for Hom(C, C ′).

However, we might want to endow the type � with identity types in addition to
its hom-types. A way to do so would be to have another type �′ which has the exact
same terms as� but is neutral. Then we could say Id� (C, C ′) to actually mean Id�′ (C, C ′).

145 Chapter 3. Directed Type Theory

directedTT

symm : {A : NeutTy Γ}{t : Tm(Γ, A−)}{t’ : Tm(Γ, A)} →
(f : Tm(Γ, Id(t,t’))) → Tm(Γ, Id(−t’,−t))

symm f := (J⁺t,S [id ,+ t’ ,+ f]
where

S : Ty (Γ ⊲⁺ A ⊲⁺ Hom(t, v₀))
S := Id(−v₀[p], −t[p ◦ p])

Figure 3.6: Symmetry of identity types of neutral types. Alternatively,
symm 5 := trHom (−v0,−C [p]) 5 reflC arrives at the same result.

Thus � would have both an identity type structure and a hom-type structure, and
we could study their interaction. Now, the category model actually supports two
canonical choices for how to do this.

• As mentioned, we have the core construction, an endofunctor on Cat whose
object part sends a category to its maximal sub-groupoid (taken as a category).
This becomes an operation on types by post-composition, so for every type
(in any context) �, we get a neutral type �0 in the same context. As North
observes, the terms of�0 can be coerced into terms of� (and�−) in an arbitrary
context; but in a neutral context, this coercion is reversible: �0 and � have the
same terms:

Tm(Γ, �0) � Tm(Γ, �).
So, if we follow the above procedure, understanding Id� (C, C ′) to mean
Id�0 (C, C ′)—coercing silently across the above isomorphism—then we get a
notion of identity for every type.a
This notion of identity is stronger than the hom-types: a term q of type
Id�0 (C, C ′) is interpreted as a family of isomorphisms between the interpre-
tations of C and C ′—for every object W of Γ, q (W) is an �(W)-isomorphism be-
tween C (W) and C ′(W). So we could split this into its two directions, obtaining
q→ : Tm(Γ,Hom(C, C ′)) and q← : Tm(Γ,Hom(−C ′,−C)).

• Dually, we can consider the groupoid closure, i.e. theCat-endofunctor sending
a category to its minimal super-groupoid, which we obtain by freely adding
inverses to everymorphism. This too becomes a type-to-neutral-type operation,
denote it �∗. The attending notion of identity we’d get by the procedure above
is weaker than directed equality: for every 5 : Tm(Γ,Hom(C, C ′)), we could
obtain an identity Id�∗ (C, C ′) just by pairing the components of 5 with their
formal inverses.

So we have, in principle, two ways of equipping a directed type with undirected
identity types related to its hom-types, one stronger and one weaker, one ‘right’ and
one ‘left’ (referring to the fact that core and closure are defined with the right- and
left-adjoints, respectively, to the forgetful functor Grpd⇒ Cat). Depending on our
desired interpretation, we may want one notion of identity, or the other, or perhaps

3.1. Directed Eqality Types 146

both.
aSince a groupoid is its own maximal sub-groupoid, this gives us back the same identity types if �

is already neutral.

Recall that the groupoid model was originally devised to establish the independence
of UIP: it showed that the ordinary rules of Martin-Löf Type Theory permit identity
types to have multiple elements which are not themselves identical. In the language of
homotopy type theory, the groupoid model includes types which are not 0-truncated
(also known as h-sets), but are instead 1-truncated types (i.e. h-groupoids). However,
unlike general homotopy type theory, the groupoid model doesn’t permit truncation
levels above 1: while it doesn’t validate UIP, it does validate “UIP one level up”, that is,
the identity types of the groupoid model are h-sets—two identity proofs, if identical,
are identical by a unique identity proof. Semantically, this corresponds to the fact
that identity types are interpreted as families of discrete groupoids, i.e. sets treated as
groupoids—there’s no way for the identity types of identity types to have nontrivial
structure.

A priori, the syntax of directed type theory—the initial DCwF—allows us to express
all levels of higher categories: we can form the type of homs-between-homs, and homs-
between-homs-between-homs, and so on forever. But, as with the groupoid model, in
the category model this trivializes after the first step. However, in directed type theory,
things are a bit more complex. If we iterate homs-between-homs-between-…, there are
two ways in which things can “trivialize”: beyond a certain level, the types in question
can become subsingletons, i.e. h-props (the point at which this happens is the truncation
level mentioned above), but, independently, all the hom-types above a certain level can
become neutral, i.e. symmetric. These two “dimensions of truncation” are well-known
in the category theoretic literature, in the notion of an (<,=)-category (where< and =
are natural numbers or∞). We give names to the first few steps in this hierarchy.

Definition 3.1.12. A type � is called a
• proposition if it is neutral and, for every C, C ′ : Tm(Γ, �), there is a term of
type Id(C, C ′).

• poset, or (0,1)-truncated type, if all its hom-types are propositions.
• set, or (0,0)-truncated type, if it is a neutral poset.
• category, or (1,1)-truncated type, if all its hom-types are sets.
• groupoid, or (1,0)-truncated type, if it is a neutral category.

We don’t consider (<,=)-truncation in general, but the pattern is clear: propositions—
which we could take as the notion of “(−1, 0)-truncated type”—are the base case, neutral
types always have 0 as the second truncation parameter, and an (< + 1, = + 1)-truncated
type has (<,=)-truncated types as its hom-types. Interpreting types as directed ho-
motopy spaces, the (<,=) parameters reflect the usual homotopy dimension,<, of the
space (the same way an<-truncated type in HoTT is understood as an<-dimensional
homotopy space) and the category-theoretic dimension, =, of its directed paths.

Let’s make a few comments about this definition. First, note that we do much
of our quantification at the metalanguage (“there is a term…”, “all its hom-types…”)
instead of internalizing the quantification into the object language using dependent

147 Chapter 3. Directed Type Theory

types. It’s possible that some or all of this quantification could be moved inside the
object language, as is the practice in undirected type theory (homotopy type theory in
particular). However, this is more difficult in directed type theory, because we have
to account for variances; universal quantification has to be functorial with the right
variance in order to be admitted into the polarized syntax. Our purpose in making this
definition is to delineate different varieties of DCwF, so metalanguage quantification is
alright for us. But a more mature version of the present theory aiming to articulate
higher category theory would need to substantively address this issue.

Second, notice that we say “poset” instead of “preorder”. In the present theory,
there’s not a precise statement of antisymmetry: only neutral types have identity types,
so, for a non-neutral poset, we can’t actually say that hom-terms in either direction
between two terms implies those terms are identical. But we adopt this terminology
in anticipation of the above-mentioned method for extending identity types to non-
neutral types by way of core types. If, say, we had core types with the appropriate
observational laws—namely that a hom in �0 between C and C ′ is given by a synthetic
isomorphism between C and C ′, i.e. homs in � from C to C ′ and from −C ′ to −C that
compose to the respective refl’s—and defined Id(C, C ′) to mean Id�0 (C, C ′), then posets in
the sense above really would be antisymmetric: if we had a witnesses that “C ≤ C ′”, i.e.
some 5 : Tm(Γ,Hom(C, C ′)) and that “C ′ ≤ C”, i.e. some 6 : Tm(Γ,Hom(−C ′,−C)), then
these would necessarily compose to the respective refl terms (since the hom-types of
� are propositions), thus yielding a hom-term in �0 between C and C ′, i.e. an identity
Id(C, C ′). There are more details to attend to than we care to consider presently, but this
is the motivation for saying “poset”, and likewise with “set” instead of “setoid”.7

Our reason for introducing these distinctions is to make the following definition,
specializing the notion of ‘DCwF’ based on its maximum truncation level.

Definition 3.1.13. • A (1,1)-DCwF is a DCwF all of whose types are categories.
• A (1,0)-DCwF is a DCwF all of whose types are groupoids.
• A (0,1)-DCwF is a DCwF all of whose types are posets.
• A (0,0)-DCwF is a DCwF all of whose types are sets.

Example 3.1.14. The category model is a (1,1)-DCwF: all of its hom-types are neutral
and hence we write Id for the hom-types between terms of a hom-type; moreover, the
hom-types satisfy UIP, that is, for 5 , 5 ′ : Tm(Γ,Hom(C, C ′)) and U, V : Tm(Γ, Id(5 , 5 ′)),
we have a term of type Id(U, V).

Example 3.1.15. The preorder model is a (0,1)-DCwF.

Notice that an ordinary, undirected CwFwith intensional identity types is essentially
an (∞, 0)-DCwF in this notation,8 with the ∞ indicating that no particular level of

7To carry this terminology throughout, we should also say “univalent category” and “univalent
groupoid” above, but we omit this distinction for simplicity.

8We’re implicitly using a more advanced analogue of Definition 2.2.3, which views any CwF as a
NPCwF with trivial polarization, every context and type neutral, and the e and ee isomorphisms being
just identities. If the CwF is further equipped with intensional identity types, then those serve as the
hom-types, making this into a DCwF as well.

3.1. Directed Eqality Types 148

truncation is assumed.9 And likewise for finite truncation levels: analogously to
Example 3.1.14 and Example 3.1.15 respectively, the groupoid model would be a (1, 0)-
DCwF and the setoid model a (0, 0)-DCwF.

Definition 3.1.16. The syntax (or language) of (1,1)-directed type theory ((1,1)-
directedTT for short) is the initial (1,1)-DCwF.

To be fully precise, we understand (1,1)-DCwFs an (indexed) GAT: we modify the
(indexed) GATDCwF by making the Hom type constructor go into neutral types10 and
by adding a constructor witnessing UIP for hom-types. Analogous moves can be made
to render, (0, 1)-DCwFs, (2, 1)-DCwFs, etc. as (indexed) GATs. In what follows, we
won’t explicitly refer to these constructors, rather taking it for granted that hom-types
are sets.

Remark 3.1.17. Observe that the GAT of (1,1)-DCwFs is a purely structural type theory:
its initial algebra (the syntax of (1,1)-directedTT) has only the empty context, no
types, and no terms. However, we can arrive at a nontrivial directed type theory
by appending type- and term-constructors. We will choose only those constructors
which are validated by the category model, so the category model continues to be a
model of (1,1)-directedTT+(the constructors).

Example 3.1.18. For any set - (in particular the finite sets , 1, 2, …), the category
model supports a closed type, interpreted as the discrete category on - .

Example 3.1.19. The category model supports a closed type ®2, which is constructed
by two points 80 : Tm(•, ®2−) and 81 : Tm(•, ®2) and a term 801 : Tm(•,Hom(80, 81)).

A future version of this theory could perhaps include a framework for introducing
and reasoning about directed higher-inductive types, i.e. types like ®2which are generated
by term-constructors and hom-constructors. However, we leave this to future work.

The walking arrow is among the simplest possible types which is genuinely directed,
i.e. is resolutely not neutral. This can be seenmost acutely in the following independence
result, which at long last establishes that our type theory is indeed a directed type
theory.

Theorem 3.1.20. The syntax of (1,1)-directed TT + the walking arrow type ®2 cannot
prove the symmetry of arbitrary hom-types:

symm : {Γ}{C}{C ′} → Tm(Γ,Hom(C, C ′)) → Tm(Γ,Hom(−C ′,−C)) .
9Likewise, the notion of ‘DCwF’ given in Definition 3.1.6 could be called (∞,∞)-DCwF, since it

doesn’t proscribe any truncation.
10Since we implement the NeutTy ↩→ Ty subpresheaf in the GAT NPCwF as a predicate

isNeut_Ty : (Γ : Con) ⇒ Ty Γ ⇒ U (see Figure 2.11), this amounts to extending DCwF with
a witness that isNeutTy(hom(t,t′)).

149 Chapter 3. Directed Type Theory

Proof. Suppose such a symm could be constructed in the syntax. Then obtain

symm 801 : Tm(•,Hom(−81,−80))

in the syntax model. By initiality, we would have the same in the category model.
But this is interpreted as an element of the set

®2 [81, 80]

of which there are none. Contradiction.

Remark 3.1.21. If we extend (1,1)-directed TT + ®2 with further constructs validated
by the category model, the result asserted in Theorem 3.1.20 continues to hold: by
hypothesis, the category model will continue to be a model of whatever type theory
we obtain, so the initiality map used in the proof of Theorem 3.1.20 will exist for that
theory.

In many respects, this result is the culmination of our choice to work in the category
model: we wanted to develop a directed dependent type theory, i.e. intensional Martin-
Löf Type Theory but “dropping the assumption of symmetry” on the identity types to
obtain hom-types. But symmetry is a difficult thing to “drop”: it’s not an axiom of MLTT
but rather a theorem provable from the J-rule. So we had to impose further discipline on
the type theory—the polarity calculus—in hopes that the J-rule would be unable to prove
symmetry. But, of course, proving that a formal theory cannot prove something requires
a metatheoretic argument, so we developed the formal language of (1,1)-directed type
theory by abstracting the features of the category model. Theorem 3.1.20 demonstrates
that we succeeded in getting rid of symmetry as an inherent theorem of type theory.

3.2 Observations and Universes
“…even the most trivial actions should be undertaken in reference to the end. And
the end for rational creatures is to follow the reason and the rule of that most
venerable archetype of a governing state—the Universe.”

Marcus Aurelius, Meditations

The present work sits firmly in the “extensional type theory in intensional type
theory” tradition [Hof95b; Alt99]: we seek to build a directed type theory which is
intensional (in the sense that our hom-types are coarser than definitional directed equal-
ity, i.e. reduction), but we also wish to include (the directed analogue of) extensionality
principles. As we have throughout, we most closely adhere to the development of the
groupoid model [HS95] which is resolutely a model of intensional equality—extensional
equality must validate the uniqueness of identity proofs, which the groupoid model
was specifically designed to refute—but nonetheless validates axioms such as function
extensionality. Furthermore, the universe of sets interpreted by the groupoid model
also admits a universe extensionality principle: the identity type between two terms
of the set universe is equivalent to the type of bijections between the corresponding

3.2. Observations and Universes 150

sets. The groupoid model thus prefigures the development of homotopy type theory
and univalent foundations: taking the groupoid model’s rejection of UIP to its logical
extreme, we obtain the higher types characteristic of HoTT, and the attending notion
of universe extensionality for the universes of higher types is Voevodsky’s univalence
axiom.

As with the rest of directed type theory, the historical development of directed
univalence follows the opposite progression of undirected univalence: the groupoid
model and its universe extensionality came before full HoTT and its univalence axiom,
but the present development of directed universe extensionality in the category model
is coming after the appearance of full directed HoTT (in the form of simplicial type
theory) and its notion of directed univalence [GWB24]. As noted in the beginning of
this thesis, we don’t view the success of simplicial type theory as making the present
investigation irrelevant: type theory need not be a one-size-fits-all affair—it is often
beneficial to utilize a theory with more modest mathematical scope (such as the present
theory’s restriction to 1-categories) when greater generality (e.g. the∞-categories of
simplicial type theory) is not needed.

3.2.1 Opposites
In the current section, we highlight some of the ‘observational’ laws that hold in the
category model and note how they bolster the informal interpretations of ‘directed
equality’ expounded above. This will take the form of several axioms, which we add to
the existing syntax (the syntax of of (1,1)-directedTT + Π + Σ + the types mentioned
in the previous section), which we’re justified in doing because the category model
supports all these constructs and because all these axioms can be written down as
GAT extensions of the GAT of (1,1)-DCwFs. First off, we characterize the interaction
between hom-types and opposites.

Axiom. For every context Γ, every � : Ty Γ, and every C : Tm(Γ, �−), C ′ : Tm(Γ, �),

Hom�− (C ′, C) = Hom� (C, C ′). (Op-Observ.)

This axiom finally makes explicit our contention that �− is supposed to represent
the dual of �. For instance, if � is a poset, then a term of type Hom� (C, C ′) witnessing
C ≤ C ′ is the same as a term Hom�− (C ′, C) witnessing C ′ ≥ C . In the directed homotopy
space interpretation, this is saying that �− is the same underlying space as �, but with
the direction on all the paths reversed. In the logical-temporal and computational
interpretations, this tells us that �− represents the same relation as �, but with time
running backwards.

As is standard in category theory, Op-Observ. opens up the possibility of every
construct having a dual, obtained by turning all the arrows around. We will see
numerous examples of this in chapter 4. Here’s our first instance: a principle of slice
path induction, dual to the coslice path induction introduced before.

Definition 3.2.1 (Slice Path Induction). Instantiating Definition 3.1.4 with � = �−

and transforming by Op-Observ., we obtain the following induction principle. A

151 Chapter 3. Directed Type Theory

pseudoAgda

J− : (t’ : Tm(Γ, A))
→ (M : Ty (Γ ⊲⁺ A− ⊲⁺ Hom(v₀, t’[p])))
→ Tm(Γ, M[id ,+ −t’ ,+ refl−t′])
→ Tm(Γ ⊲⁺ A− ⊲⁺ Hom(v₀ , t’[p]), M)

(J−t’,M m) : (W : |Γ|) → (a : |A W |) → (x : (A W) [a , t’ W]) → | M(W , a, x) |
(J−t’,M m) W a x = M (idW , x) (m W) −− x = t’ idW ◦ A idW idtW ◦ x

(J−t’,M m) : (W ₀₁ : Γ [W ₀,W₁])
→ (a₁₀ : AW₁ [a₁ , A W ₀₁ a₀])
→ M(W₁, a₁, t’(W ₀₁) ◦ A W ₀₁ x₀ ◦ a₁₀)[

M(W ₀₁,a₁₀) ((J−t,M m) W ₀ a₀ x₀),
((J−t,M m) W₁ a₁ (t’(W ₀₁) ◦ A W ₀₁ x₀ ◦ a₁₀))

]
(J−t’,M m) W ₀₁ a₁₀ = M (idW1 , t’(W ₀₁) ◦ A W ₀₁ x₀ ◦ a₁₀) (m W ₀₁)

Figure 3.7: Direct construction of the J−-rule (slice path induction) in
the category model.

direct construction in the category model is given by Figure 3.7

Γ : NeutCon � : Ty Γ
C ′ : Tm(Γ, �) " : Ty(Γ B+ �− B+ Hom(v0, C ′[p]))

< : Tm(Γ, " [id ,+ −C ′ ,+ refl−C ′]
(J− < : Tm(Γ B+ �− B+ Hom(v0, C ′[p])), ") (Slice Path Induction)

(J− <) [id ,+ −C ′ ,+ refl−C ′] =< (Slice V)

We designate this path induction principle J− because it is “looking backwards” from
the base point, that is, it proves a claim about arbitrary homs whose codomain/destina-
tion is the fixed point C ′. In terms of category theory, this is just saying that the identity
morphism is the terminal slice, dual to the assertion (made formal with the J+ rule) that
identity morphisms are also the initial coslice. The observation that these universal
mapping properties are rendered as induction principles will be a central theme of the
next chapter.

From the computational and logical-temporal interpretations, we can read J− as
saying that any property< : " (−C ′, refl) of the current state C ′—trivially rendered as the
past state −C ′ of zero seconds ago, which trivially becomes C ′ by refl—has an analogous
antecedent property J− < : " (C, 5) for any past state C which becomes C ′ by any process
5 . As C evolved into C ′ by 5 , J− < evolved into<.

Now, there are circumstanceswhere either J+ or J− could be deployed to prove a claim.

3.2. Observations and Universes 152

This is particularly the case when defining operations on hom-terms, such as in Fig-
ure 3.3. There, we have composable homs 5 : Tm(Γ,Hom(C, C ′)) and6 : Tm(Γ,Hom(−C ′, C ′′)).
We could define their composite 5 · 6 as we did above, by coslice path induction with 5
as the method and 6 substituted in after; but we could also go the other way around:
do slice path induction with 6 as the method, and then substitute in 5 . In the category
model, both yield the same thing.

directedTT

Sl : {t’ : Tm(Γ, A)} → Ty (Γ ⊲⁺ A−)
Sl {t’} := Hom(v₀, t’[p])

v₀·_ : Tm(Γ, Hom(−t’,t’’)) → Tm(Γ ⊲⁺ A− ⊲⁺ Sl{t’}, Hom(v₁, t’’[p ◦ p])
v₀· g := (J−t′,Sl{t′′} g)

· : Tm(Γ, Hom(t,t’)) → Tm(Γ, Hom(−t’,t’’)) → Tm(Γ, Hom(t,t’’))
f · g := (v₀· g) [id ,+ t ,+ f]

Figure 3.8: Composition of hom-terms, by slice path induction

Proposition 3.2.2. Given composable hom-terms 5 : Tm(Γ,Hom(C, C ′)) and
6 : Tm(Γ,Hom(−C ′, C ′′)) in the category model, there is a (metatheoretic) equality

(J+ 5) [id ,+ C ′ ,+ 6] = (J− 6) [id ,+ C ,+ 5] .

Proof. Let W : |Γ | be arbitrary.

(J+ 5) [id ,+ C ′ ,+ 6] W = ((J+ 5) ◦ (id ,+ C ′ ,+ 6)) W
= (J+ 5) W (C ′ W) (6 W)
= Hom(C [p ◦ p], v1) idW (C ′ W) (6 W) (Figure 3.2)
= (6 W) ◦ (5 W) (Figure 3.9)
= Hom(v1, C ′′[p ◦ p]) idW (C W) (5 W) (Figure 3.9)
= (J− 6) W (C W) (5 W) (Figure 3.7)
= ((J− 6) ◦ (id ,+ C ,+ 5)) W
= (J− 6) [id ,+ C ,+ 5] W .

So, by (metatheoretic) function extensionality, these two terms have equal object parts.
Their morphism parts send morphisms W01 : Γ [W0, W1] to morphisms in the category
Hom(C, C ′′) W1. But this is a discrete category: its morphisms are metatheoretic
identity terms. Thus, by metatheoretic UIP, these morphism parts must also agree.
So conclude that the two terms are equal.

As with the other axioms/constructs we’ve introduced, we’re justified in asserting

153 Chapter 3. Directed Type Theory

Hom(C [p ◦ p], v1) : (W01 : Γ [W0, W1]) → (001 : (�W1) [� W01 00, 01]) →
(�W0) [C W0, 00] → (�W1) [C W1, 01]

Hom(C [p ◦ p], v1) W01 001 G0 := 001 ◦� W01 G0 ◦ C (W01)
Hom(v1, C ′′[p ◦ p]) : (W01 : Γ [W0, W1]) → (010 : (�W1) [01, � W01 00]) →

(�W0) [00, C ′′ W0] → (�W1) [01, C ′′ W1]
Hom(v1, C ′′[p ◦ p]) W01 010 G0 := C ′′(W01) ◦� W01 G0 ◦ 010

Figure 3.9: The relevant morphism parts for the proof of Proposi-
tion 3.2.2. Note that these are terms in Γ B+ � B+ Hom(−C ′[p], v0)
and Γ B+ �− B+ Hom(v0, C ′′[p]), respectively; the morphism part of
these terms take one fewer argument than would be expected, per
Remark 3.1.2.

this as an axiom of directed type theory.

Axiom (Composition Coincidence). Given composable hom-terms
5 : Tm(Γ,Hom(C, C ′)) and 6 : Tm(Γ,Hom(−C ′, C ′′)), the following judgmental
equality holds.

(J+ 5) [id ,+ C ′ ,+ 6] = (J− 6) [id ,+ C ,+ 5]

As an upshot, this makes both the left- and right-unit laws of composition hold
judgmentally (Figure 3.10): to prove refl · 6 equals 6, we take composition to be defined
by slice path induction, so refl · 6 = 6 by Slice V ; and likewise we treat composition
as defined by slice path induction to get that 5 · refl = 5 by Coslice V . This is perhaps
“too nice”, and might have to be removed in order for this directed type theory to
have favorable computational properties. But for the sake of pen-and-paper reasoning
(particularly some of the constructions of the next chapter), it is a convenient principle
to adopt.

3.2.2 Σ-Types
Let’s now shift our attention to Σ-types, recalling the Pair/Unpair notation of Proposi-
tion 1.2.14 and the negative counterpart from Remark 2.3.31. By the latter, we know
that the negation operation distributes over Pair:

−(Pair(B′, C ′)) = Pair−(−B′,−C ′)

and over the projection term formers, e.g.

pr1(−() = −pr−1 (()

for (: Tm(Γ, (Σ��)−). Our goal will be to develop the directed analogue of the charac-
terization of the identity types of Σ-types in undirected type theory. That is, we want
to take the statement

3.2. Observations and Universes 154

directedTT

Csl : {t : Tm(Γ, A−)} → Ty (Γ ⊲⁺ A)
Csl {t} := Hom(t[p], v₀)

Sl : {t’ : Tm(Γ, A)} → Ty (Γ ⊲⁺ A−)
Sl {t’} := Hom(v₀, t’[p])

· : Tm(Γ, Hom(t,t’)) → Tm(Γ, Hom(−t’,t’’)) → Tm(Γ, Hom(t,t’’))
f · g := (f ·v₀) [id ,+ t’’ ,+ g] −− or (v0· g) [id ,+ t ,+ f]

r−unit : (g : Tm(Γ, Hom(−t’,t’’))) → Tm(Γ, Id(refl−t′ · g, g))
r−unit g := reflg −− by J −V , refl · g = g

l−unit : (f : Tm(Γ, Hom(t,t’))) → Tm(Γ, Id(f · reflt′ , f))
l−unit f := reflf −− by J +V , f · refl = f

assoc : (f : Tm(Γ, Hom(t,t’)))
→ (g : Tm(Γ, Hom(−t’,t’’)))
→ (h : Tm(Γ, Hom(−t’’,t’’’)))
→ Tm(Γ, Id(f · (g · h), (f · g) · h))

assoc f g h := (J⁺−t′,S reflf·g)[id ,+ t’’’ ,+ h]
where

S : Ty (Γ ⊲⁺ A ⊲⁺ Hom(t[p], v₀))
S := Id((J⁺−t′,Csl{t} f) [p ,+ (J⁺−t′′,Csl{−t′} g)] ,

(J⁺−t′′,Csl{t} (f · g))
)

Figure 3.10: Synthetic category laws for composition.

Id((, (′) '
∑

U : Id (pr1 ((),pr1 ((′))
Id(tr U (pr2 (), pr2((′)) (3.2.3)

and come to an appropriate analogue in our directed type theory. We’ll loosely follow
the presentation of Rijke [Rij22, Section 9.3]. In that presentation, the left-to-right
direction of the above equivalence is defined by path induction, sending refl to the
pair (refl, refl), and then the tools of Homotopy Type Theory are used to construct an
inverse for this map. We’ll also define the one map by directed path induction, but,
given our more impoverished setting, we’ll instead just axiomatically assert an inverse
in the metatheory (justified by the category model, of course).

The precise formulation is given in Figure 3.11, but we explain it more carefully
here. Fix some (: Tm(Γ, (Σ��)−); we then construct a type ObsHom((, v0) in context
Γ B+ Σ�� of “observational homs”11 between (and the variable v0. This type is a

11By analogy to how
∑

U : Id (pr1 ((),pr1 ((′)) Id (tr U (pr2 (), pr2 ((′)) is the type of witnesses to the

155 Chapter 3. Directed Type Theory

Σ-type, the type of dependent pairs whose first component is a hom between the first
components of (and v0, and whose second component is a hom between their second
components, over the first hom. That is, we have to transport pr−2 ((), a term of type
along the first component (the hom between pr−1 (() and pr1(v0)) to get it into the same
type as pr2(v0) so we can speak of homs between them. This is not a transport in the
precise sense of Definition 3.1.7, as the hom we’re transporting along is a variable;12
but nonetheless we can perform this transport: since pr−2 (() is a term in the neutral
context Γ (of type � [id ,+ −pr−1 (()]

−), we can use it as the method for (coslice) directed
path induction based at pr−1 (():

J+ pr−2 (() : Tm(Γ B+ � B+ Hom((pr−1() [p], v0), � [p]−).

Then, we can substitute in pr1(v0) in for the � term and the first component in for the
hom:

(J+ pr−2 (()) [...] : � [p◦p ,+ (pr1v0) [p]]
− Γ B+ Σ�� B+ Hom((pr−1 (()) [p], pr1v0)

J+ pr−2 (() : � [p]
− Γ B+ � B+ Hom((pr−1 (()) [p], v0).

(p◦p ,+ (pr1v0) [p] ,+ v0)

Since (pr2v0) [p] has type � [p ,+ pr1v0] [p] = � [p ◦ p ,+ (pr1v0) [p]], it makes sense
to form the type

Hom((J+ pr−2() [p ◦ p ,+ (pr1v0) [p] ,+ v0], (pr2v0) [p])

and use this as the second component of the type ObsHom((, v0).
Given some term (′ : Tm(Γ, Σ��), we’ll writeObsHom((, (′) forObsHom((, v0) [id ,+ (′].

Observe13 that, once we supply (′, the “transport” we did above indeed becomes a gen-
uine transport in the sense of Definition 3.1.7:

ObsHom((, (′) = Σ (Hom(pr−1 (, pr1 (
′)) (Hom(tr v0 ((pr−2 () [p]), pr2 (

′))

where the transport is happening in the context ΓB+Hom(pr−1(, pr1(
′), which is neutral

because hom-types are neutral. Then, if Pair(i,k) : Tm(Γ,ObsHom((, (′)), this means
that

i : Tm(Γ,Hom(pr−1(, pr1(
′))

k : Tm(Γ,Hom(tr i (pr−2 (), pr2 (
′)

“observational equality” between (and (′ above.
12We’re forming the type of the second component in the context

Γ B+ Σ�� B+ Hom ((pr−1 () [p], pr2 (v0))

and trying to transport along the de Bruijn index v0 in this context.
13Care of the calculation in Figure 3.12.

3.2. Observations and Universes 156

In particular, consider (′ = −(. Since tr refl G = G by Coslice V , we observe that
Pair(refl, refl) is a valid term of type ObsHom((,−(). We can use this to define a map

Hom−to−pair : Tm(Γ,Hom((, (′)) → Tm(Γ,ObsHom((, (′))

by directed path induction on (′; in fact, we can use Definition 3.1.7 itself this time:
given some ℎ : Tm(Γ,Hom((, (′)), we have

Hom−to−pair ℎ := tr ℎ (Pair(refl, refl)) : Tm(Γ,ObsHom((, (′)).

Our characterization of the hom-types of Σ-types is the assertion14 thatHom−to−pair
is a bijection, whose inverse is called, appropriately, pair−to−Hom. That is, the hom-
types of Σ-types are given observationally—to construct a directed path in Σ�� between
two points, it is necessary and sufficient to construct a directed path in � between their
first components and a “heterogeneous directed path in � over the first path” between
their second components.

Axiom (Sigma Observation). The map Hom−to−pair sending terms ℎ of type
HomΣ�� ((, (′) to tr ℎ (Pair(refl, refl)) is a bijection.

There are a number of different ways we could have stated this principle, some
weaker and some stronger. We could, for instance, have made the much stronger
assertion that Hom((, (′) and ObsHom((, (′) are definitionally equal types. Or we
could’ve pushed more of this statement into the object language, such as by requiring
pair−to−Hom to be the inverse of Hom−to−pair only up to propositional equality,15 or
perhaps by trying to internalize Hom−to−pair as a function in the object theory rather
than the metatheory. However, we think that the statement as given strikes the appro-
priate object language/metalanguage balance, and falls squarely in the observational
type theory tradition.

This axiom is a key piece of the—yet unfinished—task of stating a directed structure
identity principle in the present framework. A directed SIP, or perhaps we could say
structure morphism principle, asserts that the directed paths in a type of “structures”
correspond to the classical homomorphisms, the structure-preserving functions. A “type
of structures” means, roughly, a Σ-type of one or more sets (elements of the universe of
sets—see below), plus elements of those sets and functions on those sets. The above
axiom allows us to say that the hom-types of “structures” are given by homs on each of
their components; all that remains to get to a structure morphism principle is showing
that this yields the classical notion of homomorphism. Such a principle has recently
been achieved in the simplicial style of directed type theory [GWB24], but there are
still some obstacles preventing us from stating it here. We do get that directed paths in
the universe of sets are indeed functions, and can get a directed SIP for pointed sets

14Represented in pseudoAgda as a postulate.
15Both ℎ and pair−to−Hom(Hom−to−pair ℎ) are elements of Hom ((, (′), which is always neutral in

(1,1)-directed type theory and hence has identity types. But we don’t know a priori that ObsHom((, (′)
is neutral—to assert the other direction propositionally, we would need to stipulate that neutral types are
closed under Σ (which is probably a reasonable requirement anyways), or adopt one of the strategies
discussed in Remark 3.1.11 to have identity types for non-neutral types. But we leave this question
unexplored.

157 Chapter 3. Directed Type Theory

too—see below—but we aren’t yet able to characterize the hom-types of function types,
ruling out all but the most basic kinds of “structure”. We hope to rectify this in the
future.

3.2.3 Universes
So far, we have developed the directed analogues of all the key constructs of Martin-Löf
Type Theory, except one: universes. As discussed in section 1.2, a universe is a type of
codes for types, and care must be taken to avoid the paradoxes that arise from a universe
containing (a code for) itself. Therefore, we restrict our attention in the present work
to a universe of sets—interpreted in the category model as the category of sets and
functions. We suspect that a proper development of (2,1)-directed type theory and its
semantics in 2-categories would permit the introduction of a universe of (1-)categories,
but this is beyond our scope here.

Definition 3.2.4. For some Γ : Con, write
• Sets Γ for the set of sets in Γ (i.e. the subset of NeutTy Γ consisting of types
whose hom-types are propositions);

• Props Γ for the set of propositions in Γ (i.e. the subset ofNeutTy Γ consisting
of types all of whose terms are identical).

Axiom (Set Universe). There is a type Set : Ty Γ (with Set[f] = Set) equipped with a
bijection (which is appropriately stable under substitution):

El : Tm(Γ, Set) ∼−→ Sets Γ.

Axiom (Prop Universe). There is a type Prop : Ty Γ (with Prop[f] = Prop) equipped
with a bijection (which is appropriately stable under substitution):

El : Tm(Γ, Prop) ∼−→ Props Γ.

In (1,1)-directed type theory, all hom-types are indeed hom-sets, reflecting our
1-categorical model theory into the syntax. Accordingly, we can regard the hom-type
former as going into Sets Γ rather than Ty Γ, and therefore hom-types are encoded in
the universe of sets. We adopt the following notation.

Definition 3.2.5. For any � : Ty Γ, C : Tm(Γ, �−), and C ′ : Tm(Γ, �), write

HomSet� (C, C ′) : Tm(Γ, Set)

for the set such that

El(HomSet� (C, C ′)) = Hom� (C, C ′).

This gives us a source of sets, meaning we can write functions into Set. Now,
remember our category-theoretic understanding of this directed type theory: types
� are categories, �− is the opposite category of �, and Set is the category of sets. In

3.2. Observations and Universes 158

the next chapter, we’ll also demonstrate that the functions in this theory are synthetic
functors—any term of type � → � automatically comes equipped with a “morphism
part”, functorially sending directed paths in � to directed paths in �. Therefore, we
can regard terms of type �− → Set as synthetic presheaves on �, contravariant functors
taking values in the category of sets. Our lack of a suitable notion of synthetic natural
transformation16 prevents us from giving a thorough development of the category of
presheaves, we are able to make the following key definition.

Definition 3.2.6. Given a type � : Ty Γ for Γ : NeutCon, define the Yoneda embed-
ding

y : Tm(Γ, �[e] → �[e]− → Set)
by

y := lam(lam((HomSet(v0, v1)) [ee {�,�−}])) .

Now we turn our attention to the directed extensionality principle for Set, the fact
that it’s supposed to represent the category of sets and functions. Accordingly, we
need to characterize the hom-types of Set as being given by functions. This will be the
principle of directed univalence for this (directed) universe.

Axiom (Directed Univalence). The function Hom−to−func sending

ℎ : Tm(Γ,Hom(−-,.)) ↦→ tr ℎ IEl - : Tm(Γ, (El -) [e] → El .)

is a bijection.

Following [HS95, Section 5.4], we remark that this principle of directed universe
extensionality is inconsistent with the “uniqueness of homs” principle mentioned at the
beginning of this chapter (the directed analogue of UIP), assuming Set contains some
nontrivial set. For instance, suppose we encode the boolean type 2 (which is a set) by a
term 2: Tm(Γ, Set), i.e. so El(2) = 2. Then we can define two distinct terms of type
2[e] → 2, e.g. tt := lam+(tt[p]) and ff := lam+(ff[p]). Thus, obtain two distinct
terms—call them :tt and :ff, respectively—of type Hom(2, 2) since func−to−Hom is
injective. If UHP were stated internally, i.e. we had some term U : Tm(Γ, Id(:tt, :ff)),
then we can construct an identity Id(tt, ff) as the composite of the following identities
(let G be an arbitrary term of type 2, say, tt).

• We have a definitional equality between tt $
+ G and tt, and likewise for ff $

+ G

16We do have natural transformations in our theory: the terms of type � → � are functors from
the category � to the category �, and the type � → �, like any type, comes equipped with hom-
types. So if � : Tm (Γ, (� → �)−) and � : Tm (Γ, � → �), then Hom (�,�) is the type of natural
transformations between � and � , and we can talk about the identity natural transformation (refl) and
(vertical) composition of natural transformations, etc. But when we say that we “lack a suitable notion
of synthetic natural transformation”, we mean that it is not possible in the present theory to manipulate
these natural transformations component-wise: given U of Hom (�,�) and some object C of �, we don’t
have syntax for obtaining the component UC of type Hom� (� $+ C,� $+ C), nor do we have a mechanism
for defining such a natural transformation component-wise. Such syntax would require a way to have
variables appearing negatively and positively, which isn’t possible in our current framework.

159 Chapter 3. Directed Type Theory

and ff; so the respective refls are of type

Id(tt, tt $
+ G) and Id(ff $

+ G, ff).

• By Proposition 3.2.7 below, obtain identities

Id(tt $
+ G, tr :tt G) and Id(tr :ff G, ff $

+ G).

• And the key step: by transporting17 refltr :tt G along U , obtain an identity

Id(tr :tt G, tr :ff (G [p])).

So UHP plus Directed Univalence Axiom implies that Id(tt, ff). We could also employ
Set as the prototypical non-neutral type in Theorem 3.1.20 (in place of the walking
arrow ®2) to argue that symmetry is independent of directed type theory because the
interpretation of the universe Set in the category model, i.e. the actual category of
sets, is not a groupoid. That is: in the syntax of directed type theory plus a universe
Set containing, say, codes 0 and 1 for the sets ∅ and 1, respectively, we cannot prove
symmetry of homs: if we could, then the interpretation of this syntax into the category
model would imply the existence of a morphism in the category of sets from a singleton
set (the interpretation of the term 1 in the category model) to the empty set (the
interpretation of 0), of which there are none. Similarly, we could carry out the above
boolean-based argument at the metatheoretic level to prove that the syntax of directed
type theory plus a universe Set containing a code 2 for 2 cannot possibly prove UHP,
because the category model’s interpretation of Set has four distinct terms of type
Hom(2, 2).

Finally, let’s put all this together and take the first step towards a directed structure
identity principle in this theory. Consider the type of pointed sets, which we can define
as

Set• := Σ Set (El v0).
Now, given -,. : Tm(Γ, Set) and G0 : Tm(Γ, El -) and ~0 : Tm(Γ, El .), it is clear what
a hom of type

HomSet• (Pair−(−-, G0), Pair(.,~0))
ought to be: it should be a function � from the set - to the set . and an identity
Id(� $+ G0, ~0). Applying Sigma Observation Axiom, we see that the hom-type above is
equivalent to ObsHom(Pair−(−-, G0), Pair(.,~0)), i.e.

Σ (HomSet(−-,.)) (Id(tr v0 (G0 [p]), ~0)) .

The second component becomes an identity type because it’s a hom in the neutral type
El(.). Now, transform the first component by way of Directed Univalence Axiom: the
hom-type above now becomes

Σ ((El -) [e] → El .) (Id(tr (func−to−Hom v0) (G0 [p]), ~0)) .
17In the context Γ, with motive

Id ((tr :tt G) [p], tr v0 G) : Ty (Γ B+ Hom (−2, 2)) .

3.2. Observations and Universes 160

Here, we rely on the neutrality of El -) [e] → El . in order for the transport and
application of func−to−Hom in the extended context to be legitimate. Technically,
we didn’t add this as an axiom, but we could.18 Now we just need to prove that
tr (func−to−Hom v0) G0 is the same thing as v0 $+ G0.

Proposition 3.2.7. For every Γ : NeutCon, -,. : Tm(Γ, Set), G0 : Tm(Γ, El -) and
� : Tm(Γ, (El -) [e] → El .), there is an identity

Id(� $+ G0, tr (func−to−Hom �) G0) .

Proof. By Directed Univalence Axiom, write � as Hom−to−func(i) for some
i : Tm(Γ,Hom(−-,.)). We prove the corresponding claim,

Id((Hom−to−func i) $+ G0, tr i G0)

for all i by induction: if i = refl−- , then this just amounts to a witness of the identity

Id(IEl- $+ G0, G0)

so we use reflG0 .

In this case, we’re actually applying Proposition 3.2.7 with the context Γ being
Γ B+ (El -) [e] → El . , the set - being - [p], � being v0, and so on. So, finally, we
have our structure morphism principle:

Principle (Structure Morphism Principle—Pointed Sets).

Tm(Γ,Hom(Pair−(−-, G0), Pair(.,~0)))
� Tm(Γ, Σ ((El -) [e] → El .) (Id(v0 $+ G0, ~0))) .

Of course, this is the simplest possible case for a directed SIP: we don’t yet have a
characterization of the hom-types of function types (a directed function extensional-
ity), preventing us from doing the same analysis for, say, N-algebras, or monoids, or
categories, or CwFs. But the development so far provides a proof-of-concept, pending
further development.

This concludes our discussion of observational/extensionality laws in directed type
theory. We have taken the fundamental type formers from Martin-Löf Type Theory—Σ-
types, Π-types, identity types, and universes—and considered their analogue in directed
type theory. For all of these besides Π-types, we were able to characterize their hom-
types:

• the hom-types of hom-types provide syntax for synthetic higher category theory;
in (<, 1)-directed type theory, we stipulate that hom-types are neutral, thus homs-
between-homs are rather identities between homs—matching the 1-category

18A more principled development—which we don’t undertake here—would be to stipulate that Set
comes equipped with its own internal Π-types and Σ-types. In particular, for every -,. : Tm (Γ, Set),
there’s some .- : Tm (Γ, Set). Then we could say that El

(
.-

)
= (El -) [e] → (El.), and thereby

conclude that the right-hand side is a set (since the left-hand side is), and, in particular, neutral.

161 Chapter 3. Directed Type Theory

theoretic practice of considering equations between the elements of hom-sets;
• the hom-types of Σ-types are given observationally, as a Σ-type of hom-types
between the respective components;

• the hom-type between two elements of the universe Set are given by functions
on the sets they denote—a statement of univalence for the (1,1)-truncated setting.

The latter of two were asserted as inverses to operations internally definable by trans-
port (i.e. by directed path induction), as is the practice in homotopy type theory. As
mentioned, we do not give a characterization for Π-types—a directed function exten-
sionality—in the present work; there are more difficult polarity problems (involving
dinaturality) which must be solved to make such a treatment possible.

3.2. Observations and Universes 162

directedTT

module SigmaObserve {Γ : NeutCon}{A : Ty Γ}{B : Ty (Γ ⊲⁺ A)}
(S : Tm(Γ, Σ(A,B)−))

where

ObsHom(S,v₀) : Ty (Γ ⊲⁺ Σ(A,B))
ObsHom(S,v₀) :=

Σ
(
Hom((pr₁− S)[p] , pr₁(v₀))

) (
Hom(trpr₂S , pr₂(v₀)[p])

)
where

trpr₂S : Tm(Γ ⊲⁺ Σ(A,B) ⊲⁺ Hom((pr₁− S)[p] , pr₁(v₀)),
B[p ◦ p ,+ pr₁ v₁]−)

trpr₂S := (J⁺ pr₂−(S))[p ◦ p ,+ (pr₁ v₁) ,+ v₀]

obsreflS : Tm(Γ, ObsHom(S,v₀)[id ,+ −S])
obsreflS := Pair(refl,refl)

variable
S’ : Tm(Γ, Σ(A,B))

Hom−to−pair : Tm(Γ, Hom(S,S’)) → Tm(Γ, ObsHom(S,v₀) [id ,+ S’])
Hom−to−pair h := trObsHom(S,v0) h obsreflS

postulate
pair−to−Hom :
Tm(Γ, ObsHom(S,v₀) [id ,+ S’]) → Tm(Γ, Hom(S,S’))

pairHomV :
(h : Tm(Γ, Hom(S,S’))) → pair−to−Hom(Hom−to−pair h) = h

pairHom[:
(O : Tm(Γ, ObsHom(S,v₀) [id ,+ S’])) →

Hom−to−pair(pair−to−Hom O) = O

Figure 3.11: Statement of Sigma Observation Axiom in directed type
theory syntax.

163 Chapter 3. Directed Type Theory

(J+ (pr−2()) [p ◦ p ,+ (pr1v1) ,+ v0] [q(idΓ ,+ (′)]
= (J+ (pr−2()) [p ◦ p ,+ (pr1v1) ,+ v0] [p ,+ (′[p] ,+ v0]
= (J+ (pr−2()) [p ,+ (pr1 (

′) [p] ,+ v0]
= (J+ (pr−2()) [p ◦ p ◦ p ,+ v1 ,+ v0] [idΓ′ ,+ (pr1 (′) [p] ,+ v0]
= (J+ (pr−2()) [q(p)] [idΓ′ ,+ (pr1 (

′) [p] ,+ v0]
= (J+ ((pr−2() [p])) [idΓ′ ,+ (pr1 (

′) [p] ,+ v0] J+ []
= tr v0 ((pr−2() [p]) (Definition 3.1.7)

Figure 3.12: Calculation of the domain of the second component in
ObsHom((, (′). Here, Γ′ := Γ B+ Hom(pr−1(, pr1(

′).

pseudoAgda

Set : Ty Γ
Set W := Set

El : {Γ : Con} → Tm(Γ,Set) → NeutTy Γ
|El(X) W | := X W
(El(X) W) [x₀ , x₁] := (x₀ = x₁)

Figure 3.13: Construction of the universe Set in the category model

HomSet (v0,v1) [ee] : Set Γ B− �[e] B− �[e] [p−]−

HomSet (v0,v1) : Set Γ B+ � B+ �[p+]−

ee {�,�−}

Figure 3.14: The substitution by ee performed in Definition 3.2.6.

3.2. Observations and Universes 164

directedTT

module UniverseObserve {Γ : NeutCon}(X : Tm(Γ, Set))
where

ObsHom(−X,v₀) : Ty (Γ ⊲⁺ Set)
ObsHom(−X,v₀) := (El X)[e] → El v₀

obsreflX : Tm(Γ, ObsHom(−X,v₀)[id ,+ X])
obsreflX := IEl X −− Definition 2.3.11

variable
Y : Tm(Γ, Set)

Hom−to−func(v₀) : Tm(Γ ⊲⁺ Set ⊲⁺ Hom(−X,v₀), ObsHom(−X,v₀)[p])
Hom−to−func(v₀) := J⁺ obsreflX

Hom−to−func : Tm(Γ, Hom(−X,Y)) →
Tm(Γ, ObsHom(−X,v₀) [id ,+ Y])

Hom−to−func h := Hom−to−func(v₀)[id ,+ Y ,+ h]
−− = tr h obsreflX

postulate
func−to−Hom :
Tm(Γ, ObsHom(−X,v₀) [id ,+ Y]) → Tm(Γ, Hom(−X,Y))

funcHomV :
(h : Tm(Γ, Hom(−X,Y))) → func−to−Hom(Hom−to−func h) = h

funcHom[:
(F : Tm(Γ, ObsHom(−X,v₀) [id ,+ Y])) →

Hom−to−func(func−to−Hom F) = F

Figure 3.15: Statement of Directed Univalence Axiom in directed type
theory syntax.

Chapter 4

Synthetic-Inductive Category Theory

“Come with me and you’ll be
In a world of pure imagination
…
We’ll begin with a spin
Traveling in the world of my creation
What we’ll see will defy
Explanation”

Willy Wonka, Willy Wonka & the Chocolate Factory

4.1 An Introduction to Informal (1,1)-Directed Type
Theory

Our investigation into the category model culminates with a demonstration of its “auto-
synthetic” ability: in the category model, and indeed in any model of (1,1)-directed
type theory, the types are endowed with the structure of synthetic 1-categories by virtue
of their hom-types. We have already seen the starting-point of this synthetic category
theory in the foregoing definition of composition; our purpose now is to fill out more of
the theory. Of course, we cannot hope to be exhaustive—far, far too much has been
said about 1-categories in the past eighty years to replicate here—but hopefully we can
lay out enough to get a better idea of our theory’s overall shape and character, and to
guide future work.

Though the present work is not a work of homotopy type theory per se, we are
certainly working in the HoTT tradition. Of all the great ideas incorporated into the
“HoTT Book” [Uni13], perhaps the most genius1 is its pioneering of informal type
theory.2 The concepts and proofs of the HoTT Book are not presented as manipulations

1In this author’s opinion.
2We are told that Peter Aczel was a particularly strong proponent of writing the HoTT Book in this

style.

4.1. An Introduction to Informal (1,1)-Directed Type Theory 166

in a formal deductive calculus, but written in an informal, human-readable fashion.
As the book notes [Uni13, Introduction], purely-formal presentations of such a theory
constitute a significant barrier to entry and hinder the theory’s practical utility to
working mathematicians—any formal system which aspires to being widely understood
and used must admit an informal style,3 which is still rigorous (in the sense of being
formalizable). We seek to apply this lesson to our (1,1)-directed type theory. Therefore,
in the present section, we will conduct synthetic 1-category theory in informal directed
type theory, but assure ourselves of its rigor by formalizing it into our formal syntax.
We begin by recounting the content of the previous two chapters in this informal style.

4.1.1 Neutral-Polarized TypeTheory
As demonstrated in the preceding chapters, the suitable environment for directed type
theory to occur is a neutral context. Accordingly, our informal reasoning will take place
in some unspecified neutral context. We will never refer to this context itself: it is the
ambient environment in which we operate, but we take it for granted. We shall therefore
say “let � be a type” and “let C : �” to mean � : Ty Γ and C : Tm(Γ, �), respectively. As
is our privilege when working with neutral Γ, we suppress the distinction between Γ
and Γ− and between B+ and B−. For the informal style, we also make the e and ee
isomorphisms implicit, so for instance the endo-function type is again written �→ �.4

Perhaps for some purposes it might be useful to have our ambient, unspecified
context consist of some (neutral-typed) variables to which we could actually refer, but
in the present work Γ might as well be the empty context. Indeed, we’ll adopt the term
closed to mean that the term or type in question is formed in the ambient context, not
depending on further free variables. By contrast, an open term/type will be one that
does depend on such variables; for instance, we’ll write

G : �−, ~ : � ` " (G,~) type

to indicate that" : Ty(Γ B+ �− B+ �[p]). The judgment “neut. type” will be used to
specify that " is a neutral type. We’ll also use the phrase “type-in-telescope” (and
“term-in-telescope”) to refer to types like" , which depend on a (nonempty) telescope
of free variables. The lighter color of G and ~ serves as a visual reminder that G and ~
(and any term containing them) are not closed terms.

This distinction between closed and open will be critical for properly handling
matters of polarity: when dealing with open terms, we must carefully attend to the
polarity in order to respect variance. We will still keep track of variance by annotating
the types as �− or � (with (�−)− still equal to �). Our closed terms exist in a neutral

3The classical example of this is Zermelo-Fraenkel set theory. Most mathematicians, if pressed, would
cite this theory as the ultimate foundation of their work. But only a tiny portion of these mathematicians
work with the formal deductive calculus of ZF(C); they’re able to claim that they work in this theory
because it has an informal style—we can reason about sets, elements, subsets, and so on, using our
natural language. For the vast majority of contemporary mathematics supposedly conducted in ZFC, the
task of actually formalizing it into the formal deductive calculus is left undone—but, if the mathematics
is rigorous enough, we’re convinced it could be done.

4Though in formalizing it, we’re still obliged to write�[e] → � if� : Ty Γ or�→ �[4−] if� : Ty Γ− .

167 Chapter 4. Synthetic-Inductive Category Theory

context, and can thus be freely converted between polarities:

C : �−

−C : �
C : �−

−(−C) = C (Term Negation)

As in the formal case, we are only able to negate open terms if they meet stringent
neutrality requirements. We encapsulate this as the following principle.

Principle (Var-Neg). An open term

G1 : �1, . . . , G= : �= ` C (G1, . . . , G=) : �(G1, . . . , G=)

can only be negated (forming−C : �− in the same telescope) if every variable occurring
in C (and in �) is of a neutral type.

The formal reasoning behind this is that the term-negation operation is only defined
for neutral contexts, in this case, either Γ or some neutral extension of Γ. If “every
variable occurring in” C : � is neutral, this means that the judgment C : � can be made
in a neutral context—the one consisting of Γ extended by just those variables actually
appearing in C : �—and then weakened into whatever other context is needed. For
instance, consider the term-in-telescope

G1 : �1, G2 : �2, G3 : �3(G1, G2) ` G2 : �2

where �1 and �3 are not neutral, but �2 is, and moreover �2 doesn’t contain G1.
Formally, this means

�1 : Ty Γ and �2 : NeutTy Γ and �3 : Ty(Γ B+ �1 B
+ �2 [p]).

Now, there’s still a way to negate the term

v1 : Tm(Γ B+ �1 B
+ �2 [p] B+ �3, �2 [p ◦ p ◦ p])

to get a term of type �2 [p ◦ p ◦ p]−. Namely, we perform the negation in the neutral
context Γ B+ �2:

−v0 : Tm(Γ B+ �2, �2 [p]−)
and then weaken it to the desired context

(−v0) [q(p�1)] [p�3] : Tm(Γ B+ �1 B
+ �2 [p] B+ �3, �2 [p ◦ p ◦ p]−).

Var-Neg articulates exactly when this kind of trick is possible: if �2 “contained” the
variable G1 : �1, that is, �2 was only a type in context ΓB+�1 and not a type in context
Γ weakened into �2 [p] : Ty(Γ B+ �1), then the above trick wouldn’t be possible—the
expression Γ B+ �2 wouldn’t denote a well-formed context. And likewise if we wanted
to negate some term

G1 : �1, G2 : �2, G3 : �3 ` B2(G1, G2, G3) : �2

that contained the variables G1 and G3, i.e. could not be expressed as

G2 : �2 ` B2(G2) : �2.

4.1. An Introduction to Informal (1,1)-Directed Type Theory 168

Remark 4.1.1. Suppose we have a term-in-telescope

G1 : �1, G2 : �2, G3 : �3(G1, G2) ` C (G2) :) (G2)

which, pursuant to Var-Neg, can be negated by to obtain −C (G2) :) (G2)−. Formally,
C : Tm(Γ B+ �2,)) and the term-in-telescope is actually

C [q(p�1)] [p�3] : Tm(Γ B+ �1 B
+ �2 [p] B+ �3,) [q(p�1)] [p�3])

Then, given closed terms B1 : �1, B2 : �2, and B3 : �3(B1, B2), we can substitute these
in for G1, G2, G3:

−C (B2) :) (B2)−.
Now, in formalizing this into the syntax of (1,1)-directed type theory, there are two,
potentially different, terms to which −C (B2) could refer.

• We could be eager in performing the negation, that is, negate the term by the
above-mentioned procedure first and then substitute in the terms. By this logic,
the term −C (B2) formally translates to(

(−C) [q(p�1)] [p�3]
)
[id ,+ B1 ,+ B2 ,+ B3] .

The negation operation here, we emphasize once more, is happening in the
neutral context Γ B+ �2.

• Alternatively, we could be lazy in performing the negation, i.e. treat any
negations happening outside of Γ itself as purely formal symbolism, and only
perform negations once enough closed terms (i.e. terms in Γ) have been sub-
stituted to bring us back to Γ, where we’re definitely allowed to negate. If we
adopt this strategy, then −C (B2) denotes

−
(
C [q(p�1)] [p�3] [id ,+ B1 ,+ B2 ,+ B3]

)
= −

(
C [id ,+ B2]

)
.

Of course, there’s no ambiguity. These are the same term:

(−C) [q(p�1)] [p�3] [id ,+ B1 ,+ B2 ,+ B3]
= (−C) [q(p�1)] [id ,+ B1 ,+ B2]
= (−C) [p ◦ p ,+ v0] [id ,+ B1 ,+ B2]
= (−C) [p ◦ p ◦ (id ,+ B1 ,+ B2) ,+ v0 [id ,+ B1 ,+ B2]]
= (−C) [id ,+ B2]
= −(C [id ,+ B2])

The last step is an application of Theorem 2.3.30: the substitution

(id ,+ B2) : Sub Γ (Γ B+ �2)

is a substitution between neutral contexts, and negation is stable under such substi-
tutions.

169 Chapter 4. Synthetic-Inductive Category Theory

The “eager” approach to negation of open terms requires strict adherence to
Var-Neg: as noted above, this becomes nonsense if the types �2 or) or the term C

depend on the non-neutral variables at all. However, the “lazy” approach, if fully
developed, seems like it would permit us to transgress Var-Neg. Consider the putative
term-in-telescope

G1 : �1, G2 : �2, G3 : �3(G1, G2) ` −G1 : �−1 .

Var-Neg would forbid this, and under the eager approach it would fail: Γ B+ �1 is
not neutral, so we cannot negate the de Bruijn index 0 in that context. But, if the
negation were adopted lazily, i.e. only performed once the telescope were fulfilled
with closed terms, then there’s no issue: −G1, substituted with B1, B2, B3 as above,
would just become −B1, a perfectly-valid closed term of type �−1 .

In the present work, we follow the eager approach and steadfastly uphold Var-Neg.
This is because it’s unclear how to reconcile the lazy approach with the necessary
restrictions on directed path induction: recall that the inability to negate non-neutral
variables was the crucial mechanism preventing symmetry from being provable by
directed path induction (but permitting it for neutral types). If we want to adopt the
lazy method and run roughshod over Var-Neg, then careful work is needed to explain
why this newfound liberty wouldn’t permit us to prove symmetry.a We don’t yet
know what the lazy approach, properly developed, would look like, but this idea has
the potential to alleviate the more difficult restrictions of our polarity calculus.

aFor instance, perhaps we might require the motive for directed path induction to be eagerly
expressible.

4.1.2 Directed TypeTheory
With that established, we can do directed type theory. As discussed in the beginning of
chapter 3, the Hom-formation rule can be stated in great generality: for instance, we
could state for an arbitrary telescope Δ as follows.

Δ ` G : �− Δ ` ~ : �
Δ ` Hom(G,~) neut. type (Hom Formation)

But often times we won’t need this level of generality; instead, it might suffice to say

G : �−, ~ : � ` Hom(G,~) neut. type

or even just the version for closed terms:

C : �− C ′ : �
Hom(C, C ′) neut. type.

Note that we assert Hom(C, C ′) as a neutral type; this tells us we’re working in (<, 1)-
directed type theory. As before, we’ll write Id for the hom-types of neutral types, and
assume UIP for hom-types (so we’re indeed working in (1,1)-directed type theory). Also,
we’ll continue to affirm judgmentally that �− is the opposite category of �:

Hom�− (G′, G) = Hom� (G, G′). (Op-Observ.)

4.1. An Introduction to Informal (1,1)-Directed Type Theory 170

This latter statement of Hom-formation is the one which is relevant for the case of
hom-introduction: since we need C to occur both positively and negatively in the type
of reflC , we can only introduce refl for closed terms:

C : �−

reflC : Hom(C,−C). (Hom Introduction)

As before, we have two principles of path induction: J+ allows us to induct forwards, i.e.
prove a statement generically over coslices merely by proving it for refl; and J− allows
us to induct backwards, proving a statement generically over slices by proving it for
refl. These satisfy their respective V laws, Coslice V and Slice V .

Principle (Coslice Path Induction). [Formal]

Parameters
C : �−

Universal Data
reflC : Hom(C,−C)

Eliminator

C : �−

G′ : �,D : Hom(C, G′) ` " (G′, D) type
< : " (−C, reflC)

G′ : �,D : Hom(C, G′) ` J+ < : " (G′, D)

V Law

J+ < (−C, reflC) =< (Coslice V)

Principle (Slice Path Induction). [Formal]

Parameters
C ′ : �

Universal Data
refl−C ′ : Hom(−C ′, C ′)

Eliminator

G : �−, D : Hom(G, C ′) ` " (G,D) type
< : " (−C ′, refl−C ′)

G : �−, D : Hom(G, C ′) ` J− < : " (G,D)

171 Chapter 4. Synthetic-Inductive Category Theory

V Law

J− < (−C ′, refl−C ′) =< (Slice V)

Our first task will be to construct the synthetic category structure of types by
defining composition of homs. As before, this is effortless with the help of directed
path induction.

Construction 4.1.2 (Composition). [Formal]
Given 5 : Hom(C, C ′) and 6 : Hom(−C ′, C ′′), define 5 · 6 : Hom(C, C ′′) by either:

• Coslice path induction: define 5 · reflC ′ := 5
• Slice path induction: define refl−C ′ · 6 := 6

Again, it will be quite convenient to assert that these definitions coincide judgmen-
tally.

Principle (Composition Coincidence). [Formal]
The two definitions of 5 · 6 given in Composition are equal.

Thus, both 5 · refl = 5 and refl · 6 = 6 hold as judgmental equalities, and can be
proved as propositional identities, Id(5 · refl, 5) and Id(refl · 6,6) by refl rather than by
another directed path induction. Associativity, however, does require path induction.

Construction 4.1.3 (Associativity of Composition). [Formal]
For hom-terms 5 , 6, ℎ such that 5 · (6 · ℎ) is well-typed, the associativity witness

assoc 5 6 ℎ : Id(5 · (6 · ℎ), (5 · 6) · ℎ)

is defined by coslice path induction on ℎ:

assoc 5 6 refl := refl5 ·6 : Id(5 · (6 · refl), (5 · 6) · refl)

Let us also repeat the observation that neutral types have symmetric hom-types, i.e.
identity types.

Construction 4.1.4 (Symmetry of Identity). [Formal]
Suppose � is a neutral type and C : �−. Then the term-in-telescope

G′ : �,D : Id(C, G′) ` D−1 : Id(−G′,−C)

is given by J+reflC , i.e.
refl−1C := reflC .

As alluded to in Remark 4.1.1, here we observe the most critical function of Var-

4.1. An Introduction to Informal (1,1)-Directed Type Theory 172

Neg: the negation of the free variable G′ in the type-in-telescope Id(−G′,−C) is only
permitted because � is neutral. This constitutes our explanation for why symmetry
is not provable in general, and hence why our directed type theory is truly directed :
the hom-formation rule and Var-Neg each impose polarity disciplines, and a putative
proof of symmetry for arbitrary (not necessarily neutral) types cannot satisfy both. Of
course, the constraints of polarity and neutrality are often cumbersome, and we might
look for ways to weaken the polarity calculus to permit various constructions. But
the unprovability of symmetry serves as our fundamental benchmark: any weakening
of this system which permits the above proof to go forward for arbitrary types is too
weak.

4.1.3 Type Formers
For the purposes of synthetic category theory, we won’t have much use for dependent
functions—our focus will instead be on non-dependent functions, which will serve
as synthetic functors. This is convenient, as our only available utility for working
with multivariable function types in polarized type theory—the ee isomorphisms of
section 2.3—is only useful for non-dependent functions5 (recall that the ee isomorphisms
were specified for flat telescopes). Multivariable dependent functions could probably
be treated in this informal style, but that would require us to handle negative context
extension, which we avoid doing here. Instead, we’ll just content ourselves with the
following rules for defining non-dependent functions.

� type � type
�→ � type (→Formation)

�1, . . . , �=, � type � : �1 → · · · → �= → �

G1 : �1, . . . , G= : �= ` � (G1, . . . , G=) : � (→Application)

�1, . . . , �=, � type G1 : �1, . . . , G= : �= ` ℎ(G1, . . . , G=) : �
_G1 . . . G= .ℎ(G1, . . . , G=) : �1 → · · · → �= → � (→Abstraction)

The latter two rules are mutually inverse—these are the appropriate V and [laws.
Both encode the use of the ee isomorphisms to avoid working with negative context
extention: the→Application law represents the operation of applying app, = times to
get a term of type � [p ◦ · · · ◦ p] in context Γ B− �1 [e] B− · · · B− �= [· · ·], and then
substituting by the =-ary ee−1 to turn all theB−s intoB+s. Likewise,→Abstraction rep-
resents substitution by the =-ary ee, followed by =-many applications of lam. The = = 1
version of these procedures is encapsulated in the app+ and lam+ operators of Defini-
tion 2.3.10, while the = = 2 version of lambda abstraction is utilized in Proposition 2.3.34
and Definition 3.2.6.

Let us also call to mind Proposition 2.2.18 and its law Proposition 2.3.21:

� : (�→ �)−
�− : �− → �− �−− = �

C : �− � : �→ �
−((−�)− C) = � (−C) (4.1.5)

5And single-variable dependent functions.

173 Chapter 4. Synthetic-Inductive Category Theory

We leave the antecedent as � : (� → �)− to match how it was phrased before, but,
since we’re talking about closed terms, it’s no trouble to coerce between (�→ �)− and
� → �, as we do in the latter law. As we said when initially introducing this law, it
reflects the fact that any functor �→ � can equivalently be viewed as a functor on the
opposite categories �− → �−.

As we’ve seen, Σ-types are simpler to incorporate into polarized type theory, as
their inherently positive nature means we can operate solely with positive context
extension. This extends into the informal setting: we’re able to state their laws in
relative generality, and, unlike with Π-types, it is no extra trouble to work with the
dependent type constructs.

Δ ` � type Δ, G : � ` �(G) type∑
G : � �(G) type (Σ-Formation)

Δ ` 0 : � Δ ` 1 : �(0)
Δ ` (0,1) : ∑

G : � �(G) (Σ-Introduction)

Δ, I :
∑
G : � �(G) ` " (I) type Δ, G : �,~ : �(G) `< : " (G,~)

Δ, I :
∑
G : � �(G) ` Σ - elim< I : " (I) (Σ-Elimination)

All these can be stated in an arbitrary telescope Δ, corresponding to the fact that neutral
contexts weren’t necessary to state the introduction and elimination principles for
Σ-types in their convenient form. We only need to assume the terms/types are closed
in order to coerce between

∑
G : � �(G) and its opposite.

0 : �− 1 : �(−0)−
(0,1) : (∑G : � �(G))− −(0,1) = (−0,−1) (Σ−-Introduction)

So we’re overloading the (_, _) operation to stand for both Pair and Pair−.
Finally, we have the universe of sets,

Δ ` Set type
Δ ` - : Set

Δ ` El - neut. type

Δ ` B′, C ′ : El - Δ ` ?, @ : Id(B′, C ′)
Δ ` UIP(?, @) : Id(?, @)

which contains all hom-types

Δ ` C : �− Δ ` C ′ : �
Δ ` HomSet(C, C ′) : Set

Δ ` C : �− Δ ` C ′ : �
Δ ` El (HomSet(C, C ′)) = Hom(C, C ′).

Using this, we can recreate Definition 3.2.6 in the informal setting:

Construction 4.1.6 (Yoneda Embedding). [Formal]
For any type �, define the Yoneda embedding y : �→ �− → Set by

y := _G′ G .HomSet(G, G′)

We reason more about the properties of Yoneda in section 4.4.

4.1. An Introduction to Informal (1,1)-Directed Type Theory 174

4.1.4 Inductive Category Theory
Finally, a word on methodology. The category theory conducted here differs from
the usual category-theoretic practice: there is a difference in ontology—our theory is
synthetic (categories are our basic objects, and we never need to demonstrate that some-
thing is a category) while standard category theory is analytic (categories are defined
objects with respect to an ambient theory, e.g. set theory); but there is also a difference
in methodology: for us, category-theoretic notions (e.g. ‘product’, ‘pushout’, ‘right
adjoint’) are to be characterized by principles of induction rather than the traditional
universal mapping properties. Capturing the essential features of a new construct with
an induction principle is how type-theoretic reasoning is best done, and we’ll find that
the key constructs of basic category theory are quite amenable to this style.

Throughout this chapter, we’ll be introducing several more principles of induction;
we’ll continue to use the format seen above, which makes explicit the parameters of
the induction; the universal data that’s being asserted, i.e. the objects and morphisms
whose universal mapping property is being expressed in the principle; the eliminator
rule asserting the operation of the universal property; and the appropriate computation
rule or V law governing how the eliminator works. This makes explicit the usual logical
structure of universal mapping properties in category theory. For instance, we can
articulate the universal mapping property of the product as

“given objects -,. (the parameters), a product of - and . consists of a span
- ← % → . (the universal data) such that for every other span - ← / → . ,
obtain a unique morphism / → % (the elimination rule) such that the triangles
commute (the V law).”

Below, we’ll have a slightly different framing of the universal mapping property for
products as an induction principle, but it will follow this same template.

However, it is incumbent upon us to demonstrate that we really are getting at the
same notion, e.g. that our use of the word ‘product’ coincides with that of standard
category theory. The demonstration will consist of two steps:

• Synthesis: First, we show that the universal mapping property (stated in syn-
thetic category theory) arises as a consequence of our principle of induction. In
other words, the inductive characterization is at least as strong as the universal
mapping property characterization. For each notion, we’ll do this demonstration
informally first, but we’ll also do so formally, i.e. by explicitly constructing terms
in an arbitrary neutral context of the syntax model of (1,1)-directed type theory.

• Analysis: The other step in proving the adequacy of our inductive categorical
notion is showing that it’s not too strong. Placing limits on our theory’s power
is a job for the semantics: what we will do is show that our inductive notion
corresponds to the standard one in the empty context of the category model
(we’ll use the term “ECCM analysis”, since it is based in the empty context of the
category model). For instance, we’ll demonstrate that our inductive notion of
‘products’ is not too strong by showing that any category with products (in the
standard sense) will have them (in our sense) when that category is regarded as
a type in the empty context of the category model.

With these two steps accomplished, we’ll have shown that our inductive notion is a
faithful rendering of the standard notion, but one better suited to the synthetic category
theory setting provided to us by (1,1)-directed type theory.

175 Chapter 4. Synthetic-Inductive Category Theory

Without further ado, we can begin our synthetic category theory in earnest.

4.2 Binary (Co)Products

4.2.1 Binary Products—Informal
One of the key notions in elementary category theory are products. Binary products
(and, more generally, =-ary products) take the idea of cartesian products of sets and ab-
stract their essential properties to purely category-theoretic universal mapping property.
The category-theoretic notion of product encompasses the various notions of ‘product’
possessed by set-based structures (e.g. the product topology, the direct product of
groups) as well as various constructions less commonly considered ‘products’ (such as
the binary meets in partially-ordered sets).

In our synthetic category theory, the universal mapping property (UMP) of products
will be a principle of induction on binary cones. Fix some arbitrary type � and terms
B′, C ′ : �, and consider type families of the form

I : �−, D : Hom(I, B′), E : Hom(I, C ′) ` " (I,D, E) type.

The telescope I,D, E is an abstract, binary-cone-shaped diagram over the objects B′, C ′ in
�.

I

B′ C ′

D E

In order to inhabit" (I,D, E) abstractly over I,D, E , by induction, we need B′, C ′ to come
equipped with a universal cone. This is our notion of ‘product’.

Principle (Binary Cone Induction). [Formal]

Parameters
B′ C ′ : �

Universal Data
% : �
c1 : Hom(−%, B′)
c2 : Hom(−%, C ′)

Eliminator

I : �−, D : Hom(I, B′), E : Hom(I, C ′) ` " (I,D, E) type
< : " (−%, c1, c2)

I : �−, D : Hom(I, B′), E : Hom(I, C ′) ` elim< (I,D, E) : " (I,D, E)

4.2. Binary (Co)Products 176

V Law

elim< (−%, c1, c2) =< (Binary Cone V)

In words: a product of B′ and C ′ is a binary cone (i.e. a span) −%, c1, c2 which is
logically generic over binary cones, in the sense that any property (") which can be
proved (<) for %, c1, c2 can be proved (elim< (I,D, E)) for an arbitrary cone I,D, E . Note
that our choice of polarities for the closed terms B′, C ′, and % are somewhat arbitrary
(e.g. we could’ve specified % : �− instead) since these are closed terms and can be freely
coerced. But we do have to be careful about the open terms—I must be annotated
negative, since its role is to be the domain of the morphisms consisting of the cone.

From this inductive characterization, we can recover the standard category-theoretic
notion of ‘product’ (this is the “synthesis” step mentioned above). First, we have that
there is a ‘pairing’ operation combining the legs of a binary cone into a single map into
the product object.

Proposition 4.2.1. Suppose %, c1, c2 is a product of B′ and C ′. Then there is a term-in-
telescope

I : �−, D : Hom(I, B′), E : Hom(I, C ′) ` 〈D, E〉 : Hom(I, %)
along with identities

I : �−, D : Hom(I, B′), E : Hom(I, C ′) ` tri1 : Id(〈D, E〉 · c1, D)
I : �−, D : Hom(I, B′), E : Hom(I, C ′) ` tri2 : Id(〈D, E〉 · c2, E).

Proof. [Formal]
Consider

refl−% : Hom(−%, %) .
By the Principle of Binary Cone Induction, it suffices to define 〈c1, c2〉 in order to
construct 〈D, E〉 for abstract I,D, E , and 〈c1, c2〉 := refl−% works. That is,

〈D, E〉 := elim refl−% (I,D, E).

The required identities also follow easily: by Binary Cone V , we know

〈c1, c2〉 = refl−% ,

and thus the right unit laws for composition

runit(c1) : Id(refl−% · c1, c1) runit(c2) : Id(refl−% · c2, c2)

prove that Id(〈c1, c2〉 · c1, c1) and likewise for c2. By the Principle of Binary Cone
Induction, we have the required identities for abstract I,D, E .

Incorporating the interpretations of directed equality from section 3.1, wemight read
the situation like this: a product % of B′ and C ′ is supposed to consist of an amalgamation

177 Chapter 4. Synthetic-Inductive Category Theory

of B′ and C ′; this is witnessed by the directed paths c1 and c2, which extract or project
out one component, i.e. are processes by which % can become B′ and C ′, respectively.
That % consists only of a combination of B′ and C ′—nothing more—is demonstrated
by the universality of %, c1, c2 among binary cones, in particular the result we just
proved, Proposition 4.2.1: for any hypothetical state I with processes D and E by which
I could become B′ and C ′, there must be a process 〈D, E〉 by which I becomes % , and the
processes D and E must just consist of 〈D, E〉 followed by c1 and c2, respectively. The
usual depiction of this situation is the following commutative diagram:

I

B′ % C ′

D E〈D,E〉

c1 c2

The two identities proved above are the statement that the two triangles depicted are
commutative triangles.

The other key component of the UMP of products is that the induced morphism
〈D, E〉 is the unique one making these triangles commute. For simplicity, we only prove
this claim for closed terms,6 in the following way.

Proposition 4.2.2. There is an identity

I : �−,F : Hom(I, %) ` [0(F) : Id(F, 〈F · c1,F · c2〉).

Proof. [Formal]
By the Principle of Slice Path Induction, it suffices to construct an identity

[0(refl−%) : Id(refl−% , 〈refl−% · c1, refl−% · c2〉).

By the right unit laws of composition, we know refl−% · c1 = c1 and refl−% · c2 = c2,
so all we need is an identity Id(refl−% , 〈c1, c2〉). By Binary Cone V , reflrefl−% suffices.

Corollary 4.2.3. For any : : �−, morphisms 61 : Hom(:, B′), 62 : Hom(:, C ′), and
ℎ : Hom(:, %), with identities

g1 : Id(ℎ · c1, 61) and g2 : Id(ℎ · c2, 62)

we have an identity
[(ℎ, g1, g2) : Id(ℎ, 〈61, 62〉).

6The version of this proof for open terms involves performing transports in the telescope
I : �−, D : Hom (I, B′), E : Hom (I, C ′), which we’re not officially able to do by the letter of the Princi-
ple of Coslice Path Induction, but might be justifiable by logic similar to Var-Neg—the ferms we’re
transporting are all of identity types, which are neutral.

4.2. Binary (Co)Products 178

Proof. [Formal]
Transport the identity

[0(ℎ) : Id(ℎ, 〈ℎ · c1, ℎ · c2〉)
along g1 and g2.

4.2.2 Binary Products—Formal
Now let’s make the notion of ‘product’ (and the accompanying constructions) fully
formal by expressing them in the syntax of (1,1)-directed type theory. In what follows,
let Γ be an arbitrary neutral context, � : Ty Γ , and B′, C ′ : Tm(Γ, �).

Definition 4.2.4 (Binary Products—Formal). A product of B′ and C ′ consists of:
• a term % : Tm(Γ, �), with
• terms c1 : Tm(Γ,Hom(−%, B′)) and c2 : Tm(Γ,Hom(−%, C ′))

satisfying the principle of binary cone induction:

" : Ty(Γ B+ �− B+ Hom(v0, B′[p]) B+ Hom(v1, C ′[p ◦ p]))
< : Tm(Γ, " [id ,+ −% ,+ c1 ,+ c2])

elim" < : Tm(Γ B+ �− B+ Hom(v0, B′[p]) B+ Hom(v1, C ′[p ◦ p]), ")
(Binary Cone Induction)

such that the following V-law is satisfied.

elim" < [id ,+ −% ,+ c1 ,+ c2] =< (Binary Cone V)

For the purposes of formalizing the constructions involving products, it will be
helpful to remind ourselves of some of the abbreviations used in the previous chapter.

Definition 4.2.5. For some context Γ and type � : Ty Γ, write
• Csl{C} for the type

Hom(C [p], v0) : Ty(Γ B+ �)
for any C : Tm(Γ, �−);

• Sl{C ′} for the type
Hom(v0, C ′[p]) : Ty(Γ B+ �−);

for any C ′ : Tm(Γ, �);
• 5 · v0 for the term-in-telescope

J+−t′,Csl{C} 5 : Tm(Γ B+ � B+ Csl{−t′}, Hom(C [p ◦ p], v1))

for any 5 : Tm(Γ,Hom(C, C ′));
• v0 · 6 for the term-in-telescope

J−t′,Sl{C ′′} 6 : Tm(Γ B+ �− B+ Sl{t′}, Hom(v1, C ′′[p ◦ p]))

for any 6 : Tm(Γ,Hom(−C ′, C ′′)).

179 Chapter 4. Synthetic-Inductive Category Theory

Recall that 5 · 6 is equal to (5 · v0) [id ,+ C ′′ ,+ 6] and to (v0 · 6) [id ,+ C ,+ 5]—this
was the content of Composition Coincidence Axiom.

With this, we can formalize all the constructions given above; this is done in
Figure 4.1. We adopt the notation 〈v1, v0〉 for the paired term in-telescope, which
becomes 〈5 , 6〉 when closed terms (i.e. terms in Γ) 5 and 6 of the appropriate type are
substituted in. Since an open term can be post-composed by a closed term, we’re able
to discuss the commutative triangles and prove the uniqueness part of the universal
property.

So we’ve satisfied the ‘synthesis’ portion of our demonstration: the notion of
‘product’ defined in Definition 4.2.4 generates the usual universal mapping property of
products in the synthetic category theory. Now the other way around: analyzing this
concept in the empty context of the category model.

Proposition 4.2.6 (Binary Products—ECCM Analysis). Let C be a category and fix
� , � : |C |. Then suppose % : |C |, ?� : C [%, �] and ? � : C [%, �] has the universal mapping
property of the product of � and � .a Then, considering C as a type in the empty context of
the category model, � , � , % as terms of C, and ?� , ? � terms of the appropriate hom-types,
we have that %, ?� , ? � is a product of � , � in the sense of Definition 4.2.4.

aFor every : |C | and maps 8 : C [, �] and 9 : C [, �], there exists a unique map 〈8, 9〉 : C [, %]
such that ?� ◦ 〈8, 9〉 = 8 and ? � ◦ 〈8, 9〉 = 9 .

Proof. Let C, � , � , %, ?� , ? � be as given. Then a motive" for binary cone induction is a
functor with object part

"#1 : (- : |C |) → C [-, �] → C [-, �] → Cat

and morphism part

"#2 : (G10 : C [-1, -0]) → "#1(-0, 80, 90) ⇒ "#1(-1, 80 ◦ G10, 90 ◦ G10).

The supplied method < is just an object of the category" (%, ?� , ?2).
The desired term elim(<) should have shape

elim(<)#1 : (- : |C |) → (8 : C [-, �]) → (9 : C [-, �]) → |" (-, 8, 9) |
elim(<)#2 : (G10 : C [-1, -0]) →

" (-1, 80 ◦ G10, 90 ◦ G10) [
" G10 (elim(<)#1 (-0, 80, 90)),
elim(<)#1(-1, 80 ◦ G10, 90 ◦ G10)

]

For the object part, it suffices to put

(elim<) (-, 8, 9) := " (〈8, 9〉) < : " (-, ?� ◦ 〈8, 9〉, ? � ◦ 〈8, 9〉).

Note that this has the right type because 〈8, 9〉 makes the triangles commute. For the

4.2. Binary (Co)Products 180

morphism part, observe:

" G10 ((elim<) (-0, 80, 90)))
= " G10 (" 〈80, 90〉 <)
= " (〈80, 90〉 ◦ G10) < (Functoriality of")
= " 〈80 ◦ G10, 90 ◦ G10〉 < (UMP of products)
= (elim<) (-1, 80 ◦ G10, 90 ◦ G10).

And so the natural choice for elim < G10 is just the identity morphism. Since
〈?� , ? � 〉 = id% and" is functorial, we get that (elim<) [id• ,+ % ,+ ?� ,+ ? �] must be
<, satisfying the V law.

Remark 4.2.7. Proposition 4.2.6 is a source of examples of products: for any category
C can be regarded as a closed type in directed type theory and if C has binary products
(or at least a product for some specific pair of objects), then those become products
in the sense of Definition 4.2.4. In particular, the universe Set has all binary products,
because its interpretation does.

At the moment, we’re unable to reason internally to (1,1)-directed type theory
that functor categories � → � have products when their codomain category �
does (in particular, presheaf categories �− → Set always have binary products), as
this requires us to be able to reason about natural transformations componentwise.
This is one of the first issues we hope to address once a suitable theory of natural
transformations in (1,1)-directed type theory is given.

181 Chapter 4. Synthetic-Inductive Category Theory

directedTT

ConeTel : Con
ConeTel := Γ ⊲⁺ A− ⊲⁺ Hom(v₀, s’[p]) ⊲⁺ Hom(v₁, t’[p ◦ p])

−− Pairing
〈v₁,v₀〉 : Tm(ConeTel, Hom(v₂, P [p ◦ p ◦ p]))
〈v₁,v₀〉 := elim refl−P

〈_,_〉 : Tm(Γ, Hom(k,s’)) → Tm(Γ, Hom(k,t’)) → Tm(Γ, Hom(k,P))
〈 g₁ , g₂ 〉 := 〈v₁,v₀〉 [id ,+ k ,+ g₁ ,+ g₂]
V {m = refl−P} : 〈 c₁ , c ₂ 〉 = refl−P

−− Triangles commute
tri₁ : Tm(ConeTel, Id((v₀· c₁)[p ◦ p ,+ 〈v₁,v₀〉], v₁)
tri₁ := elim reflc1

tri₂ : Tm(ConeTel, Id((v₀· c ₂)[p ◦ p ,+ 〈v₁,v₀〉], v₀)
tri₂ := elim reflc2

−− Pairing is the only morphism making the triangles commute

[₀ : Tm(Γ ⊲⁺ A− ⊲⁺ Sl{P}, Id(v₀, 〈v₁,v₀〉[p ,+ v₀· c₁ ,+ v₀· c ₂]))
[₀ := J− reflrefl−P

[: {k : Tm(Γ,A−)}{g₁ : Tm(Γ,Hom(k,s’))}{g₂ : Tm(Γ,Hom(k,t’))} →
(h : Tm(Γ, Hom(k, P))) →
Tm(Γ, Id(h · c₁ , g₁)) →
Tm(Γ, Id(h · c ₂ , g₂)) →
Tm(Γ, Id(h , 〈g₁,g₂〉))

[h g₁ g₂ := tr g₁ (tr g₂ ([₀[id ,+ k ,+ h]))

Figure 4.1: Universal mapping property of binary products, where
s′, t′ : Tm(Γ, �) and %, c1, c2 are assumed to form a product of s′ and
t′ (witnessed by elim).

4.2. Binary (Co)Products 182

4.2.3 Binary Coproducts
Now, we can play the standard ‘duality’ trick of category theory: flip all the arrows
around, turn the minuses into pluses and vice-versa, use slice path induction instead of
coslice, pre-compose instead of post-compose, etc. We thereby arrive at our notion of
coproduct.

Principle (Binary Cocone Induction). [Formal]

Parameters
B C : �−

Universal Data
& : �−

]1 : Hom(B,−&)
]2 : Hom(C,−&)

Eliminator

I′ : �,D : Hom(B, I′), E : Hom(C, I′) ` " (I′, D, E) type
< : " (−&,]1,]2)

I′ : �,D : Hom(B, I′), E : Hom(C, I′) ` elim< (I′, D, E) : " (I′, D, E)

V Law

elim< (−&,]1,]2) =< (Binary Cocone V)

Remark 4.2.8. Observe that the Principle of Binary Cocone Induction is just the
Principle of Binary Cone Induction for the opposite category �−, rewritten with Op-
Observ.. So the claim, “coproducts are just products in the opposite category,” (and
vice-versa) is essentially a tautology in our theory. Of course, the same observation
will apply to subsequent dual pairs, like pullbacks and pushouts, left and right adjoints,
etc.

We can then perform the same synthetic derivation of the standard universal
mapping property, mutatis mutandis.

Proposition 4.2.9. Suppose &,]1,]2 is a coproduct of B and C . Then there is a term-in-
telescope

I′ : �,D : Hom(B, I′), E : Hom(C, I′) ` JD, EK : Hom(&, I′)
along with identities

I′ : �,D : Hom(B, I′), E : Hom(C, I′) ` tri1 : Id(]1 · JD, EK, D)
I′ : �,D : Hom(B, I′), E : Hom(C, I′) ` tri2 : Id(]2 · JD, EK, E).

183 Chapter 4. Synthetic-Inductive Category Theory

Proof. [Formal]
Consider

refl& : Hom(&,−&).
By the Principle of Binary Cocone Induction, it suffices to define J]1,]2K in order to
construct JD, EK for abstract I′, D, E , and J]1,]2K := refl& works. That is,

JD, EK := elim refl& (I′, D, E).

The required identities also follow easily: by Binary Cocone V , we know

J]1,]2K = refl& ,

and thus the left unit laws for composition

lunit(]1) : Id(]1 · refl& ,]1) lunit(]2) : Id(]2 · refl& ,]2)

prove that Id(]1J]1,]2K·,]1) and likewise for]2. By the Principle of Binary Cocone
Induction, we have the required identities for abstract I′, D, E .

Proposition 4.2.10. There is an identity

I′ : �,F : Hom(&, I′) ` [0(F) : Id(F, J]1 ·F,]2 ·FK).

Proof. [Formal]
By the Principle of Coslice Path Induction, it suffices to construct an identity

[0(refl&) : Id(refl& , J]1 · refl& ,]2 · refl&K) .

By the left unit laws of composition, we know]1 · refl& =]1 and]2 · refl& =]2, so all
we need is an identity Id(refl& , J]1,]2K). By Binary Cocone V , reflrefl& suffices.

Corollary 4.2.11. For any :′ : �, morphisms 51 : Hom(B, :′), 52 : Hom(C, :′), and
ℎ : Hom(&,:′), with identities

g1 : Id(]1 · ℎ, 51) and g2 : Id(]2 · ℎ, 52)

we have an identity
[(ℎ, g1, g2) : Id(ℎ, J51, 52K).

Proof. [Formal]
Transport the identity

[0(ℎ) : Id(ℎ, J]1 · ℎ,]2 · ℎK)
along g1 and g2.

And likewise for the corresponding formalization and ECCM analysis.

4.2. Binary (Co)Products 184

Definition 4.2.12 (Binary Coproducts—Formal). A coproduct of B and C consists of:
• a term & : Tm(Γ, �−), with
• terms]1 : Tm(Γ,Hom(B,−&)) and]2 : Tm(Γ,Hom(C,−&))

satisfying the principle of binary cocone induction:

" : Ty(Γ B+ � B+ Hom(B [p], v0) B+ Hom(C [p ◦ p], v1))
< : Tm(Γ, " [id ,+ −& ,+]1 ,+]2])

elim" < : Tm(Γ B+ � B+ Hom(B [p], v0) B+ Hom(C [p ◦ p], v1), ")
(Binary Cocone Induction)

such that the following V-law is satisfied.

elim" < [id ,+ −& ,+]1 ,+]2] =< (Binary Cocone V)

Proposition 4.2.13 (Binary Coproducts—ECCMAnalysis). Let C be a category and fix
� , � : |C |. Then suppose & : |C |, @� : C [� ,&] and @ � : C [� ,&] has the universal mapping
property of the coproduct of � and � .a Then, considering C as a type in the empty context
of the category model, � , � ,& as terms of C, and @� , @ � terms of the appropriate hom-types,
we have that &,@� , @ � is a coproduct of � , � in the sense of Definition 4.2.12.

aFor every : |C | and maps 8 : C [� ,] and 9 : C [� ,], there exists a unique map J8, 9K : C [&,]
such that J8, 9K ◦ @� = 8 and J8, 9K ◦ @ � = 9 .

The proof is almost identical to that of Proposition 4.2.6, but with slightly-different
variance.

185 Chapter 4. Synthetic-Inductive Category Theory

directedTT

CoconeTel : Con
CoconeTel := Γ ⊲⁺ A ⊲⁺ Hom(s[p], v₀) ⊲⁺ Hom(t[p ◦ p], v₁)

−− Copairing
⟦v₁,v₀⟧ : Tm(CoconeTel, Hom(Q[p ◦ p ◦ p], v₂))
⟦v₁,v₀⟧ := elim refl&

⟦_,_⟧ : Tm(Γ, Hom(s,k’)) → Tm(Γ, Hom(t,k’)) → Tm(Γ, Hom(Q,k’))
⟦ f₁ , f₂ ⟧ := 〈v₁,v₀〉 [id ,+ k’ ,+ f₁ ,+ f₂]
+V {m = refl& } : ⟦ ι₁ , ι₂ ⟧ = refl&

−− Triangles commute
tri₁ : Tm(CoconeTel, Id((ι₁·v₀)[p ◦ p ,+ ⟦v₁,v₀⟧], v₁)
tri₁ := elim refl]1

tri₂ : Tm(CoconeTel, Id((ι₂·v₀)[p ◦ p ,+ ⟦v₁,v₀⟧], v₀)
tri₂ := elim refl]2

−− Copairing is the only morphism making the triangles commute

[₀ : Tm(Γ ⊲⁺ A ⊲⁺ Csl{−Q}, Id(v₀ , ⟦v₁,v₀⟧[p ,+ ι₁ ·v₀ ,+ ι₂ ·v₀]))
[₀ w := (J⁺ reflrefl&)

[: {k’ : Tm(Γ, A)}{f₁ : Tm(Γ, Hom(s,k’))}{f₂ : Tm(Γ, Hom(t,k’))} →
(h : Tm(Γ, Hom(Q, k’))) →
Tm(Γ, Id(ι₁ · h , f₁)) →
Tm(Γ, Id(ι₂ · h , f₂)) →
Tm(Γ, Id(h , ⟦f₁,f₂⟧))

[h g₁ g₂ := tr g₁ (tr g₂ ([₀[id ,+ k’ ,+ h]))

Figure 4.2: Universal mapping property of binary coproducts

4.3. Pullbacks and Pushouts 186

4.3 Pullbacks and Pushouts
The development of pullbacks and pushouts in our synthetic category theory is, natu-
rally, largely identical to that of products and coproducts. The only additional detail to
attend to is the handling of the identities witnessing the commutativity of the square.
Consider the pullback of 51, 52 as follows.

B′2

B′1 C ′

52

51

A pullback of this cospan consists not just of an object % and morphisms c1, c2, but
also a witness i to the commutativity of the square.

% B′2

B′1 C ′

c2

c1 52
i

51

And then the universal mapping property supplies a morphism I to % whenever we
supply morphisms D : Hom(I, B′1) and E : Hom(I, B

′
2) and a witnessk that D · 51 equals

E · 52.
I

% B′2

B′1 C ′

D

E

〈D,E |k 〉51,52

c2

c1 52
i

51

The key property of this induced map 〈D, E | k 〉51,52 is, as usual, that the triangles
commute:

Id(〈D, E | k 〉51,52 · c1, D) and Id(〈D, E | k 〉51,52 · c2, E).

But, our demonstration that 〈D, E | k 〉51,52 is the unique morphism having this
property will rely on us being able to “whisker” identities by morphisms. That is, given
morphisms 5 , 5 ′, 6 and i : Id(5 , 5 ′)

C C ′ C ′′

5

5 ′

i
6

187 Chapter 4. Synthetic-Inductive Category Theory

we need to be able to obtain i · 6 : Id(5 · 6, 5 ′ · 6) and, dually, givenk : Id(6,6′)

C C ′ C ′′
5

6

6′

k

obtain 5 ·k : Id(5 ·6, 5 ·6′). This is relevant to our universal mapping property synthesis
because our approaching to proving the uniqueness of 〈D, E | k 〉 will follow the same
template as the previous proofs: we’ll show that for any morphismF : Hom(I, %), we
obtain an identity

[0 : Id(F, 〈F · c1,F · c2 | F · i〉).
Note the use ofF · i . We therefore define whiskering.

Construction 4.3.1 (Whiskering). [Formal]

• Given 5 , 5 ′ : Hom(C, C ′) and i : Id(5 , 5 ′), define

I′ : �,D : Hom(−C ′, I′) ` i · D : Id(5 · D, 5 ′ · D)

by i · D := J+ i (I′, D).
• Given 6,6′ : Hom(−C ′, C ′′) andk : Id(6,6′), define

I : �,D : Hom(I,−C) ` D ·k : Id(D · 6,D · 6)

by D ·k := J− k (I,D).

With this established, we can proceed with our notion.

Principle (Span Induction). [Formal]

Parameters
B′1 B
′
2 C
′ : �

51 : Hom(−B′1, C
′)

52 : Hom(−B′2, C
′)

Universal Data
% : �
c1 : Hom(−%, B′1)
c2 : Hom(−%, B′2)
i : Id(c1 · 51, c2 · 52)

4.3. Pullbacks and Pushouts 188

Eliminator

I : �−, D : Hom(I, B′1), E : Hom(I, B
′
2),k : Id(D · 51, E · 52) ` " (I,D, E,k) type

< : " (−%, c1, c2, i)
I,D, E,k ` elim< (I,D, E,k) : " (I,D, E,k)

V Law

elim< (−%, c1, c2, i) =< (Span V)

The construction of the pairing map is almost identical to Proposition 4.2.1: we
define

I : �−, D : Hom(I, B′1), E : Hom(I, B
′
2),k : Id(D · 51, E · 52) ` 〈D, E | k 〉51,52 : Hom(I, %)

by induction: 〈c1, c2 | i〉 := refl−% . And, similarly, induction allows us to conclude that

Id(〈D, E | k 〉51,52 · c1, D)

from the observation that refl−% · c1 = c1, and likewise for c2. Also essentially the
same is the construction of

I : �−,F : Hom(I, %) ` [0(F) : Id(F, 〈F · c1,F · c2 | F · i〉51,52)

by the Principle of Slice Path Induction: [0(refl−%) := reflrefl−% works because refl−% ·c1,
refl−% · c2, and refl−% · i are judgmentally equal to c1, c2, and i , respectively (all by
Slice V) and 〈c1, c2 | i〉51,52 = refl−% by Cospan V . We proceed a bit more carefully
when defining [witnessing the uniqueness of this pairing morphism for closed terms.

Proposition 4.3.2. Fix any : : �−, 61 : Hom(:, B′1), 62 : Hom(:, B
′
2), and k : Id(61 ·

51, 62 · 52). Then, for any ℎ : Hom(:, %), with identities

g1 : Id(ℎ · c1, 61) and g2 : Id(ℎ · c2, 62)

we have an identity
[(ℎ, g1, g2) : Id(ℎ, 〈61, 62 |k 〉).

Proof. [Formal]
Consider the identity

[0(ℎ) : Id(ℎ, 〈ℎ · c1, ℎ · c2 |ℎ · i〉).

Now, we want to transport this along the identities g1 and g2. To do so, first consider

D1 : Hom(:, B′1), \ : Id(ℎ · c1, D1) ` tr \ (ℎ · i) : Id(D1 · 51, (ℎ · c2) · 52),

and recall that tr refl (ℎ ·i) = ℎ ·i . This will serve as the third argument to 〈_, _ | _〉

189 Chapter 4. Synthetic-Inductive Category Theory

as we transport the first argument along g1: we have the motive

D1 : Hom(:, B′1), \ : Id(ℎ · c1, D1) ` Id(ℎ, 〈D1, ℎ · c2 | tr \ (ℎ · i)〉 type.

and [0(ℎ) : Id(ℎ, 〈ℎ · c1, ℎ · c2 | tr reflℎ·c1 (ℎ · i)〉), so

tr g1 [0(ℎ) : Id(ℎ, 〈61, ℎ · c2 | tr g1 (ℎ · i)〉) .

Likewise with g2:

tr g2 (tr g1 [0(ℎ)) : Id(ℎ, 〈61, 62 | tr g2 (tr g1 (ℎ · i))〉) .

This is almost right, but we need the third argument to bek . But because bothk and
tr g2 (tr g1 (ℎ · i)) are identities between homs, i.e. terms of type Id(61 · 51, 62 · 52),
they must be equal by UIP. So we can transport tr g2 (tr g1 [0(ℎ)) along

UIP(tr g2 (tr g1 (ℎ · i)),k) : Id(tr g2 (tr g1 (ℎ · i)),k)

and be done.

The handling of pushouts is simply dual to this; we include the principle of cospan
induction for completeness.

Principle (Cospan Induction). [Formal]

Parameters
B1 B2 C : �

−

61 : Hom(C,−B1)
62 : Hom(C,−B2)

Universal Data
& : �−

]1 : Hom(B1,−&)
]2 : Hom(B2,−&)
k : Id(61 ·]1, 62 ·]2)

Eliminator

I′ : �,D : Hom(B1, I′), E : Hom(B2, I′),k : Id(61 · D,62 · E) ` " (I′, D, E,k) type
< : " (−&,]1,]2,k)

I′, D, E,k ` elim< (I′, D, E,k) : " (I′, D, E,k)

4.3. Pullbacks and Pushouts 190

V Law

elim< (−&,]1,]2,k) =< (Cospan V)

A formalization of the above in the syntax of (1,1)-directed type theory is given in
Figure 4.3, Figure 4.4, and Figure 4.5.

directedTT

_·v₀ : {f f’ : Tm(Γ,Hom(t,t’))} → Tm(Γ, Id(f,f’))
→ Tm(Γ ⊲⁺ A ⊲⁺ Csl{−t’}, Id(f ·v₀, f’ ·v₀))

φ ·v₀ := J⁺−t′,Id (f·v0,f′·v0) φ
V : (φ ·v₀)[id ,+ t’ ,+ reflt′] = φ

v₀·_ : {g g’ : Tm(Γ,Hom(−t’,t’’))} → Tm(Γ, Id(g,g’))
→ Tm(Γ ⊲⁺ A− ⊲⁺ Sl{t’}, Id(v₀· g, v₀· g’))

v₀· ψ := J−t′,Id (v0·g,v0·g′) ψ
V : (v₀· ψ)[id ,+ −t’ ,+ reflt′] = ψ

Figure 4.3: Whiskering of a hom with an identity

191 Chapter 4. Synthetic-Inductive Category Theory

directedTT

SpanTel : Con
SpanTel :=

Γ
⊲⁺ A− −− Apex
⊲⁺ Hom(v₀, s’₁[p]) ⊲⁺ Hom(v₁, s’₂[p ◦ p]) −− Legs
⊲⁺ Id ((v₀· f₁)[p] , (v₀· f₂)[p ◦ p ,+ v₀]) −− Square commutes

−− Pairing
〈v₂,v₁|v₀〉f1,f2 : Tm(SpanTel, Hom(v₃, P [p ◦ p ◦ p ◦ p]))
〈v₂,v₁|v₀〉f1,f2 := elim refl−P

〈_,_|_〉f1,f2 : {k : Tm(Γ,A−)}
→ (g₁ : Tm(Γ, Hom(k,s’₁)))
→ (g₂ : Tm(Γ, Hom(k,s’₂)))
→ Tm(Γ, Id(g₁ · f₁ , g₂ · f₂))
→ Tm(Γ, Hom(k,P))

〈 g₁ , g₂ | ψ 〉f1,f2 := 〈v₂,v₁|v₀〉f1,f2 [id ,+ k ,+ g₁ ,+ g₂ ,+ ψ]
V {m = refl−P} : 〈 c₁ , c ₂ | φ 〉f1,f2 = refl−P

−− Triangles commute
tri₁ : Tm(SpanTel, Id((v₀· c₁)[p ◦ p ◦ p ,+ 〈v₂,v₁|v₀〉f1,f2], v₂)
tri₁ := elim reflc1

tri₂ : Tm(SpanTel, Id((v₀· c ₂)[p ◦ p ◦ p ,+ 〈v₂,v₁|v₀〉f1,f2], v₁)
tri₂ := elim reflc2

−− Pairing is the only morphism making the triangles commute

[₀ : Tm(Γ ⊲⁺ A− ⊲⁺ Sl{P}, Id(v₀, 〈v₂,v₁|v₀〉[p ,+ v₀· c₁ ,+ v₀· c ₂ ,+ v₀· φ]))
[₀ := J− reflrefl−P

[: {k : Tm(Γ,A−)}{g₁ : Tm(Γ,Hom(k,s’₁))}{g₂ : Tm(Γ,Hom(k,s’₂))} →
{ψ : Tm(Γ, Id(g₁ · f₁, g₂ · f₂))} →

(h : Tm(Γ, Hom(k, P))) →
Tm(Γ, Id(h · c₁ , g₁)) →
Tm(Γ, Id(h · c ₂ , g₂)) →
Tm(Γ, Id(h , 〈g₁,g₂|ψ〉f1,f2))

[h g₁ g₂ := tr eq (tr g₂ (tr g₁ ([₀[id ,+ k ,+ h])))
where

eq : Tm(Γ, Id(tr g₂ (tr g₁ (h · φ)), ψ)
eq := UIP(tr g₂ (tr g₁ (h · φ)), ψ)

Figure 4.4: Universal mapping property of pullbacks

4.3. Pullbacks and Pushouts 192

directedTT

CospanTel : Con
CospanTel :=

Γ
⊲⁺ A −− Apex
⊲⁺ Hom(s₁[p], v₀) ⊲⁺ Hom(s₂[p ◦ p], v₁) −− Legs
⊲⁺ Id ((g₁ ·v₀)[p] , (g₂ ·v₀)[p ◦ p ,+ v₀]) −− Square commutes

−− Copairing
⟦v₂,v₁|v₀⟧g1,g2 : Tm(CospanTel, Hom(Q[p ◦ p ◦ p ◦ p], v₃))
⟦v₂,v₁|v₀⟧g1,g2 := elim reflQ

⟦_,_|_⟧g1,g2 : {k’ : Tm(Γ,A)}
→ (f₁ : Tm(Γ, Hom(s₁,k’)))
→ (f₂ : Tm(Γ, Hom(s₂,k’)))
→ Tm(Γ, Id(g₁ · f₁ , g₂ · f₂))
→ Tm(Γ, Hom(Q,k’))

⟦ f₁ , f₂ | φ ⟧g1,g2 := ⟦v₂,v₁|v₀⟧g1,g2 [id ,+ k’ ,+ f₁ ,+ f₂ ,+ φ]
V {m = reflQ} : ⟦ ι₁ , ι₂ | ψ ⟧g1,g2 = reflQ

−− Triangles commute
tri₁ : Tm(CospanTel, Id((ι₁· v₀)[p ◦ p ◦ p ,+ ⟦v₂,v₁|v₀⟧g1,g2], v₂)
tri₁ := elim refl]1

tri₂ : Tm(CopanTel, Id((ι₂· v₀)[p ◦ p ◦ p ,+ ⟦v₂,v₁|v₀⟧g1,g2], v₁)
tri₂ := elim refl]2

−− Copairing is the only morphism making the triangles commute

[₀ : Tm(Γ ⊲⁺ A ⊲⁺ Csl{Q}, Id(v₀, ⟦v₂,v₁|v₀⟧g1,g2[p ,+ v₀· c₁ ,+ v₀· c ₂ ,+ v₀· ψ
]))

[₀ := J⁺ reflreflQ

[: {k’ : Tm(Γ,A)}{f₁ : Tm(Γ,Hom(s₁,k’))}{f₂ : Tm(Γ,Hom(s₂,k’))} →
{φ : Tm(Γ, Id(g₁ · f₁, g₂ · f₂))} →

(h : Tm(Γ, Hom(Q,k’))) →
Tm(Γ, Id(ι₁ · h , f₁)) →
Tm(Γ, Id(ι₂ · h , f₂)) →
Tm(Γ, Id(h , ⟦f₁,f₂|φ⟧g1,g2))

[h g₁ g₂ := tr eq (tr g₂ (tr g₁ ([₀[id ,+ k’ ,+ h])))
where

eq : Tm(Γ, Id(tr g₂ (tr g₁ (ψ · h)), φ)
eq := UIP(tr g₂ (tr g₁ (ψ · h)), φ)

Figure 4.5: Universal mapping property of pushouts

193 Chapter 4. Synthetic-Inductive Category Theory

4.4 Functors and Adjoints
“The concept of an adjoint functor is in fact one of the main things that the reader
should take away from the study of this book. It is a strictly category-theoretical
notion that has turned out to be a conceptual tool of the first magnitude—on par
with the idea of a continuous function.
In fact, just as the idea of a topological space arose in connection with continuous
functions, so also the notion of category arose in order to define that of a functor,
at least according to one of the inventors. The notion of functor arose—so the
story goes on—in order to define natural transformations. One might as well
continue that natural transformations serve to define adjoints”

Steve Awodey, Category Theory [Awo10, p. 2]

4.4.1 Functors and Natural Transformations—Informal

Functors

Let us recall again the idea we earlier dubbed, “the central dogma of category theory”:
that every notion of “structure” must come equipped with a corresponding notion
of “structure-preserving morphism”. This dictum applies equally well to categories
themselves, of course: we have the notion of functor, a structure-preserving map of
categories. We’ve indicated several times previously that a function term � : � → �

in (1,1)-directed type theory will play the role of a synthetic functor between the
synthetic categories� and �. We’ve already seen that such an � transforms the “objects”:
from C ′ : �, obtain � (C ′) : �. But the “object part” of a functor is, well, only part of
the functor: it must also have a “morphism part” transforming the �-morphisms in
Hom� (C, C ′) to �-morphisms inHom� (−(� (−C)), � (C ′)), in a way that respects identities
and composition. In undirected type theory, this is the action on paths principle,
ap, witnessing the singular-valued property of functions: if Id(C, C ′), then certainly
Id(� (C), � (C ′)) for any � . Given this, and the functional programming convention
of calling the morphism part of a functor “fmap”, or just “map” (e.g. for the List
endofunctor), it seems appropriate that we should call the directed principle, “map”.

Construction 4.4.1 (Functoriality). [Formal]
Given � : �→ � and C : �−, define

I′ : �,D : Hom(C, I′) ` map � D : Hom(−(� (−C)), � (I′))

bymap � D := J+ refl−(� (−C)) . For closed 5 : Hom(C, C ′), we can more compactly write

map � 5 := tr 5 refl−(� (−C)) : Hom(−(� (−C)), � (C ′)) .

The Coslice V law tells us that map � reflC = refl−(� (−C)) . Functoriality—that map
distributes over composition—is proven by (coslice) path induction as well: fixing
closed, 5 : Hom(C, C ′)

I′′ : �, E : Hom(−C ′, I′′) ` J+ reflmap � 5 : Id(map � (5 · E), (map � 5) · (map � E)) .

4.4. Functors and Adjoints 194

Our only really concrete example of a functor is the Yoneda embedding. Unfortu-
nately, our theory is a bit too limited to prove internally what we know must be the
case: that its morphism parts are given by composition. To see the issue, pick some
C ′, C ′′ : � and observe

G : �−, E : Hom(G, C ′) ` map (y C ′′) E : Hom(−HomSet(−C ′, C ′′),HomSet(G, C ′′)) .
(4.4.2)

This is a morphism in Set, i.e. a function:

G : �−, E : Hom(G, C ′) ` Hom−to−func(map (y C ′′) E) : Hom(−C ′, C ′′) → Hom(G, C ′′)) .
(4.4.3)

There’s no doubt what this function must be: it must be precomposition by E . Unfortu-
nately, we can’t write this down so abstractly: the expression _ℎ.E ·ℎ is not well-formed,
because we don’t know how to compose two variable morphisms (one must be closed,
so we can do path induction on the other)—perhaps a bidirectional induction principle
could remedy this situation. Even if we could write down such a function, we would
need a principle of function extensionality to prove the two functions equal by proving
them pointwise-equal. None of these issues seem insurmountable, but we leave them
for future work.

Natural Transformations

In the present work, the highest universe we consider is Set. We don’t undertake
a consideration of a universe of categories, that is, a type Cat whose objects encode
1-categories (i.e. the El operator produces an arbitrary directed 1-type, not a set) and
whose hom-types correspond to arbitrary synthetic functors. Such a development
ought to be done—not in (1,1)-directed type theory, but in (2,1)-directed type theory.
First, there is a concern of paradox: if Cat is a type encoding all categories, but all the
types in (1,1)-directed type theory are categories; therefore, Cat must contain a code
for itself, which is known to be a problematic situation in type theory. Moreover, if
we tried to introduce Cat in (1,1)-directed type theory, then Cat could not be appro-
priately (directed) univalent: given C,D : Cat, directed univalence would insist that
Hom(−C,D) corresponds to the function type El(C) → El(D). The former must be a
set, because all hom-types in (1,1)-directed type theory are sets. But we are missing
a lot of information if we insist that functor categories El(C) → El(D) are all sets. In
standard category theory, functor categories have rich categorical structure given by
natural transformations; we would be “truncating” all this structure away to fit Cat into
(1,1)-directed type theory. So, in the present work, there is no type Cat whose objects
encode all 1-categories, and we let functor categories �→ � be genuine 1-categories
(with natural transformations as their hom-sets—see below), not the hom-sets of Cat.

Let’s consider natural transformations. There are two perspectives one can take on
natural transformations. First is the kind of “birds-eye” view we’ve been advancing:
a natural transformation is a morphism of functors (this is how we’ll be able to talk
about natural transformations in our theory). However, natural transformations are
not just some abstract arrow between functors: they have to consist of some “stuff”. In
standard category theory, saying “U is a natural transformation � → �” (for functors
�,� : � ⇒ �) means that U consists of a family of �-morphisms Hom� (� (0),� (0)),

195 Chapter 4. Synthetic-Inductive Category Theory

indexed by objects 0 : |�|, satisfying the appropriate naturality property. Though natural
transformations are often constructed abstractly, i.e. without having to explicitly define
them out component-wise, sometimes this is necessary—both perspectives on natural
transformations are important.

In standard, analytic category, the low-level component-wise aspect comes first:
natural transformations are defined as natural families of morphisms, and only later can
we define ‘functor categories’, thereby seeing natural transformations as morphisms
between functors. This is the “analytic” approach to natural transformations. We’re
doing the opposite, a “synthetic” approach: for us, we just needed to introduce function
types into directed type theory, and then automatically (by path induction) we get that
(a) the terms of type�→ � are functors with respect to the synthetic category structure
of � and � (Functoriality); and (b) the type � → � is itself a synthetic category, i.e.
has hom-types: given functors � : (�→ �)− and � : �→ �, a term U : Hom(�,�) is
a morphism in this functor category. Semantically, such an U will indeed turn out to
a natural transformation from � to � (indexed by the context); but in order to really
deserve the name “natural transformation”, there really should be a way to break U into
its components. That is, we should have a rule of the form

� : (�→ �)− � : �→ �

U : Hom(�,�) C ′ : �

U @ C ′ : Hom� (−((−�) C ′),� (C ′)) (4.4.4)

along with a witness of naturality:

� : (�→ �)− � : �→ � U : Hom(�,�)
C : �− C ′ : � 5 : Hom(C, C ′)

Nat(U ; 5) : Id((U @ (−C)) · (map � 5), (map (−�) 5) · (U @ C ′))

We can almost do this with the present tools. The _@ _ operator is possible, by path
induction on U . Consider the motive

/ : �→ � ` Hom(−((−�) C ′), / (C ′)) type. (4.4.5)

Now, this is, strictly speaking, not permitted by→Application: that rule only tells us
how to apply closed terms. However, by working through the gritty details (done in
subsection 4.4.2 below), we can find that this is doable in (1,1)-directed type theory. So
then, by the Principle of Coslice Path Induction,

/ : �→ �, U : Hom(�, /) ` J+ refl−((−�) C ′) (/, U) : Hom(−((−�) C ′), / (C ′)) .

So we write U @ C ′ := tr U refl−((−�) C ′) for closed terms.
Notice, though, how crucial it is that C ′ is a closed term: if C ′ were a variable of type

�, then Var-Neg would forbid −((−�) C ′); if it were instead a variable of type �−, then
we’d need to negate it in order to apply / to it to get a term of type �—also forbidden.
Fundamentally, C ′ is appears both positively and negatively in Hom(� (C ′),� (C ′)), so
the only way to incorporate this into our polarity calculus7 is by positing C ′ in a neutral
context.

7In its current form.

4.4. Functors and Adjoints 196

This turns out to be the issue preventing an internal proof of naturality. Given
5 : Hom(C, C ′), and U : Hom(�,�), we want to prove the commutativity of the square

(−�) − C � (−C)

(−�) C ′ � (C ′).

U @ (−C)

map (−�) 5 map � 5

U @ C ′

But what do we induct on, U or 5 ? Suppose we say 5 ; then � and U are closed and
fixed, but the bottom of the square needs to be open:

(−�) − C � (−C)

(−�) I′ � (I′).

U @ (−C)

map (−�) D map � D

U @ I′

But, alas, U @ I′ doesn’t make sense: we can’t perform the path induction needed to
define @ if there’s an open variable I′ : �. Likewise if we induct on U : if C ′ and 5 are
now closed terms, but U has a free endpoint / ,

(−�) − C / (−C)

(−�) C ′ / (C ′)

U @ (−C)

map (−�) 5 map / 5

U @ C ′

then map / 5 is not well-defined. So we’re stuck. It appears we don’t have the tools
to prove this internally with directed path induction. In Proposition 4.4.8 below, we
show that naturality for closed terms is admissible in (1,1)-directed type theory, indeed,
validated by the category model. For the time being, that’ll have to do.

Finally, let us observe that we also lack the ability to write new natural transfor-
mations in terms of their components. It doesn’t make sense in our current polarity
calculus to have a _-rule producing natural transformations, e.g. of the form

G : �− ` ℎ(G) : Hom(�−(G),� (−G))
_G.ℎ(G) : Hom(�,�) (4.4.6)

because we violate Var-Neg by negating G . This is the flipside of the observation above
that C ′ had to be closed in order for U @ C ′ to be definable: our polarity calculus presently
does not have a mechanism for divariant variables.

So, in conclusion: the synthetic category theory practiced here has a lot of potential,
but our flavor of (1,1)-directed type theory needs further development in order to be
able to competently handle standard category theoretic constructions.

197 Chapter 4. Synthetic-Inductive Category Theory

4.4.2 Functors and Natural Transformations—Formal

Functors

The construction of the morphism part of synthetic functors (Functoriality) is formalized
in Figure 4.6. Let us briefly note that map � 5 is interpreted in the category model, as
we might expect, as the morphism part of functors:

(map � 5) W := ((J+ refl−(� $+ (−C))) [id ,+ C ′ ,+ 5]) W
= ((J+ refl−(� $+ (−C))) (W, C ′(W), 5 (W))
= (Hom((−(� $+ (−C))) [p ◦ p], (app+�) [p])) (idW , 5 (W)) (id� W (C W))

(Figure 3.2)
= (app+�) (idW , 5 (W)) ◦ � idW id� W (C W) ◦ (−(� $+ (−C))) idW id� W (C W)

(Definition 3.1.1)
= (app+�) (idW , 5 (W))
= (app �) [ee−1] (idW , 5 (W))
= (app �) (id−1W , 5 (W))
= (� idW (C ′ W)) ◦ � idW (� W (5 W)) (Figure 2.7)
= � W (5 (W))

that is, the functor � (W) : �(W) ⇒ �(W) applied to the �(W)-morphism 5 (W) from C (W)
to C ′(W).

As for the above reasoning about the Yoneda embedding’s morphism part: we
started by instantiating themap(_, v0) of Figure 4.6 with y $+ C ′′; Equation 4.4.2 rendered
formally says

map(y $+ C ′′, v0) : Tm(Γ B+ �− B+ Hom(v0, C ′[p]),
Hom(−HomSet(−C ′[p ◦ p], C ′′[p ◦ p]),HomSet(v1, C ′′[p ◦ p]))).

This matches the form of map(_, v0) because y $+ C ′′ is contravariant: note that we’ve
written Hom� (v0, C ′[p]) in the context instead of Hom�− (C ′[p], v0).

Subsequently, we apply Hom−to−func to this hom-term (Equation 4.4.3). Formally,
this is a substitution of the in-telescope version of Hom−to−func

Hom−to−func(v0) : Tm(Γ B+ SetB+ Hom(−HomSet(−C ′[p], C ′′[p]), v0),
HomSet(−C ′[p], C ′′[p]) [e] → El v1)

which we can substitute with

Hom−to−func(map(y $+ C ′′,v0)) Γ B+ �− B+ Hom(v0, C ′[p])

Hom−to−func(v0) Γ B+ SetB+ Hom(−HomSet(−C ′[p], C ′′[p]), v0).

p◦p ,+ HomSet (v1,C ′′ [p◦p]) ,+ map(y $+ C ′′,v0)

4.4. Functors and Adjoints 198

directedTT

map(_,v₀) : {t}(F : Tm(Γ, A[e] → B)) →
Tm(Γ ⊲⁺ A ⊲⁺ Hom(t[p], v₀), Hom((−(F $⁺ (−t)))[p ◦ p], (app⁺ F)[p])

map(F,v₀) := J⁺ refl−(F $+ (−t))

map : {t}{t’}(F : Tm(Γ, A[e] → B)) → Tm(Γ, Hom(t,t’)) →
Tm(Γ, Hom(−(F $⁺ (−t)), F $⁺ t’))

map F f := (map(F,v₀))[id ,+ t’ ,+ f] −− = tr f refl

funct : (F : Tm(Γ, A[e] → B)) →
(f : Tm(Γ, Hom(t,t’))) → (g : Tm(Γ, Hom(−t’,t’’))) →
Tm(Γ, Id(map F (f · g), (map F f) · (map F g)))

funct F f g := (J⁺ reflmap F f)[id ,+ t’’ ,+ g]

Figure 4.6: Morphism part of functions

Natural Transformations

First, let’s substantiate the claim (made in passing) that a term U : Tm(Γ,Hom(�,�))
for � : Tm(Γ, (�[e] → �)−) and � : Tm(Γ, �[e] → �) is semantically interpreted (in
the category model) as a natural transformation between � and � .

Recall Figure 2.9:8 the object parts of � and � send W : |Γ | to functors �[e] (W) ⇒
�(W) (and also remember that e does nothing to objects, so �[e] (W) = �(W)). But they
have opposite morphism parts: for W01 : Γ [W0, W1] and 01 : |� W1 |,

� W01 01 : (� W1) [� W1 01, � W01 (� W0 (� W−101 01))]
� W01 01 : (� W1) [� W01 (� W0 (� W−101 01)), � W1 01] .

Then, applying Definition 3.1.1, we get that the object part of U is a family of natural
transformations between the object parts of � and � : for each W : |Γ |, U (W) is a natural
transformation from � (W) to � (W).

U W : (0 : |� W |) → (�W) [� W 0, � W 0]

� W 00 � W 00

� W 01 � W 01

U W 00

� W 001 � W 001

U W 01

As with any hom-term in the category model, the “morphism part”, U (W01) is an equa-
tion9 between U (W1) and U (W0) transposed with � and � . That is, for every 01 : |� W1 |,

8NB: In the figures from chapter 2, we typically took � : Ty Γ− , so, since our � is in Ty Γ, we’ll
throughout we’ll be using �[e] instead of �.

9Of natural transformations � (W1) → � (W1)

199 Chapter 4. Synthetic-Inductive Category Theory

(� W01 01) ◦ (� W01(U W0 (� W−101 01))) ◦ (� W01 01) = U W1 01. (4.4.7)

Diagrammatically:

�(W1)

�(W0)

�(W0)

�W1

� (W1) � (W1)

�(W−101)

� (W0) � (W0)

� (W01)

� (W01)

U (W0)

�(W01)

=

�W1

�W1.

� (W1) � (W1)
U (W1)

So U is not just a single natural transformation, but a family of natural transformations,
functorial in Γ.

The transport motive depicted in Equation 4.4.5 is indeed possible in (1,1)-directed
type theory, but requires a fair amount of details involving negative context extension.
The domain of the desired hom-type, denoted informally as −((−�) C ′), is easy: we
have C ′ : Tm(Γ, �) and −� : Tm(Γ, �[e] → �), so obtain −((−�) $+ C ′) : Tm(Γ, �−) and

(−((−�) $+ C ′)) [p] : Tm(Γ B+ (�[e] → �), � [p]−).

But the codomain—applying the zeroth de Bruijn index to C ′—is more difficult. Since
Γ B+ (�[e] → �) is not neutral, we cannot use our convenient $+ , and must deal with
the original app operator, defined in terms of negative context extension. We have the
following:

v0 : Tm(Γ B+ (�[e] → �), (�[e] → �) [p+])
app v0 : Tm(Γ B+ (�[e] → �) B− �[e] [p−+], � [p+ ◦ p−])

Now we need to (negatively) substitute in C ′ as the term of type �[e] [p−+]. The appro-
priate form is C ′[e] [p−+]:

(app v0) [id ,− (−C ′) [e] [p−+]] : � [p+] Γ B+ (�[e] → �)

(app v0) : � [p+◦p−] Γ B+ (�[e] → �) B− �[e] [p−+]

id ,− (−C ′) [e] [p−+]

4.4. Functors and Adjoints 200

(app v0) [id ,− (−C ′) [e] [p−+]] [id ,+ �]
= (app v0) [id ◦ (id ,+ �) ,− (−C ′) [e] [p−+] [(id ,+ �)−]] (Naturality of _ ,− _)
= (app v0) [id ,+ � ,− (−C ′) [e] [p−+] [id− ,− �]]
= (app v0) [id ,+ � ,− (−C ′) [e]]
= (app v0) [(id ,+ �) ◦ p−+ ◦ (id ,− (−C ′) [e]) ,− v0 [id ,+ (−C ′) [e]]]
= (app v0) [(id ,+ �) ◦ p−+ ◦ (id ,− (−C ′) [e]) ,− v0 [(id ,− (−C ′) [e])−]]
= (app v0) [(id ,+ �) ◦ p−+ ,− v0] [id ,− (−C ′) [e]]
= ((app v0) [q((id ,+ �)−)−]) [id ,− (−C ′) [e]]
= (app(v0 [id ,+ �])) [id ,− (−C ′) [e]] (app [])
= (app �) [id ,− (−C ′) [e]]
= (app �) [ee−1] [id ,+ C ′] (Corollary 2.3.28)
= � $+ C ′

Figure 4.7: Calculation of the codomain term in" [id ,+ �] for some
arbitrary term � : Tm(Γ, �[e] → �). The � = −� case tells us that
refl−((−�) $+ C ′) has the appropriate codomain for the transport in Fig-
ure 4.8, and the � = � case tells us that the transport produces the
type we want.

So the informal / (C ′) in Equation 4.4.5 is formally expressed as

(app v0) [id ,− (−C ′) [e] [p−+]] : Tm(Γ B+ (�[e] → �), � [p+]).

Now, write" for Hom((−((−�) $+ C ′)) [p], (app v0) [id ,− (−C ′) [e] [p−+]]). We want to
transport in" along some U : Tm(Γ,Hom(�,�)). So we need to supply something of
type" [id ,+ −�]. Through an ugly calculation (Figure 4.7 with � = −�), we can verify
that

" [id ,+ −�] = Hom(−((−�) $+ C ′), (−�) $+ C ′),
and so refl−((−�) $+ C ′) works. So, to conclude, we obtain tr refl−((−�) $+ C ′) U of type
" [id ,+ �], so again by Figure 4.7 (with � = �),

tr refl−((−�) $+ C ′) U : Tm(Γ,Hom(−((−�) $+ C ′),� $+ C ′))

as desired. This is the term we christen U @ C ′ in Figure 4.8.
As discussed, there does not appear to be a way to prove the naturality of natural

transformations internally. But it is true, at least in the category model.

Proposition 4.4.8. In the syntax of (1,1)-directed type theory, a pair of rules

Γ : NeutCon �, � : Ty Γ
� : Tm(Γ, (�[e] → �)−) � : Tm(Γ, �[e] → �)
U : Tm(Γ,Hom(�,�)) C ′ : Tm(Γ, �)
U @ C ′ : Tm(Γ,Hom� (−((−�) $+ C ′),� $+ C ′))

201 Chapter 4. Synthetic-Inductive Category Theory

directedTT

v₀@_ : {Γ}{A}{B}{F : Tm(Γ,(A[e] → B)−)} → (t’ : Tm(Γ, A)) →
Tm(Γ ⊲⁺ (A[e] → B) ⊲⁺ Hom(F,v₀),

Hom(−((−F) $⁺ t’) , (app v₀)[id ,+ (−t’)[e][p+−]]))
v₀@ t’ := J⁺ refl−((−�)$+C ′) −− See Figure 4.7

@ : {Γ}{A}{B}{F : Tm(Γ,(A[e] → B)−)}{G : Tm(Γ,A[e] → B)} →
Tm(Γ, Hom(F,G)) → (t’ : Tm(Γ, A)) →
Tm(Γ, Hom(−((−F) $⁺ t’) , G $⁺ t’))

α @ t’ := (v₀@ t’)[id ,+ G ,+ α] −− = tr refl U

Figure 4.8: Components of a natural transformation

� : Tm(Γ, (�[e] → �)−) � : Tm(Γ, �[e] → �) U : Tm(Γ,Hom(�,�))
C : Tm(Γ, �−) C ′ : Tm(Γ, �) 5 : Tm(Γ,Hom(C, C ′))

Nat(U ; 5) : Tm(Γ, Id((U @ (−C)) · (map � 5), (map (−�) 5) · (U @ C ′)))
is admissible (indeed, validated by the category model).

Proof. If we inspect the terms

�− $+ (−C ′) : Tm(Γ, �−) and � $+ C ′ : Tm(Γ, �),
we find that their object parts send W to � W (C ′ W) and to � W (C ′ W), respectively.
Their morphism parts are defined as follows.

(�− $+ (−C ′)) W01 : (� W1) [� W1 (C ′ W1), � W01 (� W0 (C ′ W0))]
(�− $+ (−C ′)) W01 := � W01 (� W0 (C ′ W−101)) ◦ � W01 (C

′ W1)
(� $+ C ′) W01 : (� W1) [� W01 (� W0 (C ′ W0)), � W1 (C ′ W1)]
(� $+ C ′) W01 := � W01 (C ′ W1) ◦ � W01 (� W0 (� W−101 (C

′ W01))) .
With all that ready, let’s define U @ C ′. The object part of a Hom�-term sends W to

a �(W)-morphism between the object parts of the domain and codomain term:

(U @ C ′) W : (� W) [� W (C ′ W),� W (C ′ W)] .
This is easy: just put (U @ C ′) W := U W (C ′ W). The less-obvious part, as usual, is the
morphism part: for each W01, we need to prove that the following square (in �(W1))
commutes.

� W01 (� W0 (C ′ W0)) � W01 (� W0 (C ′ W0))

� W1 (C ′ W1) � W1 (C ′ W1)

� W01 ((U @ C ′) W0)

� W01 (C ′ W1)

(U @ C ′) W1

� W01 (C ′ W1)

4.4. Functors and Adjoints 202

That is: we need to show that U W1 (C ′ W1) is equal to
(� W01 (C ′ W1))
◦ � W01 (� W0 (� W−101 (C

′ W01)))
◦ � W01 (U W0 (C ′ W0))
◦ � W01 (� W0 (C ′ W−101))
◦ (� W01 (C ′ W1).

We’ll transform the composite of the three expressions appearing next to � W01. To
start, observe that the following maps are mutual inverses, by functoriality of C ′.

C ′ W0 � W−101 (C
′W1)

� W01 (C ′ W01)

C W−101

So, then, if we instantiate the naturality square for U with W = W0, 00 = C ′(W0),
01 = � W

−1
01 (C

′W1) and 001 = � W−101 (C
′ W01), we have:

� W0 (C ′W0) � W0 (C ′ W0)

� W0 (� W−101 (C
′ W1)) � W0 (� W−101 (C

′ W1))

U W0 (C ′ W0)

� W0 (� W−101 (C
′W01) � W0 (� W−101 (C

′ W01))� W0 (C ′W−101)

U W0 (� W−101 (C
′ W1))

Applying �(W01), we get:

� W01 (U W0 (� W−101 (C
′ W1))) = � W01 (� W0 (� W−101 (C

′ W01)))
◦ � W01 (U W0 (C ′ W0))
◦ � W01 (� W0 (C ′ W−101))

so our goal simplifies to

U W1 (C ′ W1) = (� W01 (C ′ W1))
◦ � W01 (U W0 (� W−101 (C

′ W1)))
◦ (� W01 (C ′ W1).

This is just the morphism part of U (Equation 4.4.7) with 01 = C ′(W1), so we’re done
with defining U .

For the naturality witness Nat(U, 5), this amounts to a witness for each W : |Γ | of
the commutativity of the square (in �(W))

� W (C W) � W (C W)

� W (C ′ W) � W (C ′ W)

U W (−C W)

� W (5 W) � W (5 W)

U W (C ′ W)

which is just the naturality of the natural transformation U (W) : � (W) → � (W).

203 Chapter 4. Synthetic-Inductive Category Theory

4.4.3 Adjoints—Informal
Finally, we show how the notion of adjunction—one of the most important and most
useful ideas in category theory—admits representation in our calculus. For the purposes
of defining (left or right) adjoint as a principle of induction, themost suitable formulation
of “adjoint” will be the universal property of the (co)unit ([Mac78, Chapter IV.I, Theorem
2], items (i) and (iii)), rather than the hom-set isomorphism formulation often used. Here
is our definition.

Principle (Right Adjoint Induction).

Parameters
� : �→ �

Universal Data
* : � → �

n : Hom(−(� ◦*), ��)

Eliminator

B′ : �
I : �−, E : Hom((−�)−I, B′) ` " (I, E) type

< : " (−* (B′), n @ B′)
I : �−, E : Hom((−�)−I, B′) ` elim< (I, E) : " (I, E)

V Law

elim< (−* (B′), n @ B′) =< (Right Adjoint V)

Principle (Left Adjoint Induction).

Parameters
* : � → �

Universal Data
� : �→ �

[: Hom(−��,* ◦ �)

4.4. Functors and Adjoints 204

Eliminator

C : �−

I′ : �, E : Hom(C,* (I′)) ` " (I′, E) type
< : " (� (−C), [@ (−C))

I′ : �, E : Hom(C,* (I′)) ` elim< (I′, E) : " (I′, E)

V Law

elim< (� (−C), [@ (−C)) =< (Left Adjoint V)

Let’s first verify that our use of the natural transformation is well-typed. Consider
themotive< required for the eliminator of a right adjoint. In order for< : " (−* (B′), n @ B′)
to make sense, we need

n @ B′ : Hom((−�)−(−* (B′)), B′).

To see this is the case, we use the rule (Equation 4.1.5) that (−�)− C = −(� (−C)). Per
Equation 4.4.4, the domain of n @ B′ is

−((−(−(� ◦*)) B′) = −((� ◦*) B′) = −(� (* (B′))) = (−�)−(−* (B′)),

as desired; the codomain is just �� (B′) = B′.
Now, as before, we can obtain the usual universal mapping property from our

principle of induction. We’ll focus on the right adjoint, but of course the analogous
constructions can be done using the left adjoint induction principle. Suppose � : �→ �

has a right adjoint* , n . Then, for any B′ : �, obtain a term-in-telescope

I : �−, E : Hom� ((−�)−I, B′) ` Ẽ : Hom� (I,* (B′))

by the Principle of Right Adjoint Induction:

ñ @ B′ := refl−* (B′) : Hom� (−* (B′),* (B′)) .

And vice versa by the Principle of Slice Path Induction at* (B′): since we can define

refl−* (B′) := n @ B′ : Hom� ((−�)−(−* (B′)), B′),

obtain
I : �−, D : Hom(I,−* (B′)) ` refl−* (B′) : Hom� ((−�)−(I), B′).

It’s just as easy to prove these operations mutually inverse (pointwise, up to proposi-
tional equality of morphisms), and from that we have the standard universal property.

As is well-known, there are countless uses for adjunctions in category theory. For
instance, adjunctions provide a framework for discussing the existence of (co)limits.

205 Chapter 4. Synthetic-Inductive Category Theory

Definition 4.4.9. Given some type � , a type � is said to have all limits (resp. all
colimits) of shape � if the constant functor

 := _G 9 .G : �→ (� → �)

has a right (resp. left) adjoint (� → �) → �.

Example 4.4.10. Say that a type � has all binary products if it has all limits of
shape 2, i.e. there is some

prod : (2→ �) → � and n : Hom(−(◦ prod), �2→�).

with the universal mapping property of right adjoints, Right Adjoint Induction
Principle. Then, for any B′, C ′ : �, we can obtain their product by

% := prod(_1.if 1 then B′ else C ′) : �.

If we take the components of n , we get a natural transformation

c := n @ (_1.if 1 then B′ else C ′) : Hom2→� (− (%), _1.if 1 then B′ else C ′).

The components of this transformation provide us the projection morphisms:

c1 := c @ tt : Hom(−%, B′)
c2 := c @ ff : Hom(−%, C ′).

We can almost prove that this satisfies the the Principle of Binary Cone Induction:
if" is a type-in-telescope

I : �−, D : Hom(I, B′), E : Hom(I, C ′) ` " (I,D, E) type

for which we have a term < : " (−%, c1, c2), then observe we can construct the
type-in-telescope

I : �−,F : Hom((−)−I, _1.if 1 then B′ else C ′) ` "′(I,F) type

by
"′(I,F) := " (I,F @ tt,F @ ff)

and indeed< : "′(−%, n @ (_1.if 1 then B′ else C ′)), so by the the Principle of Right
Adjoint Induction, obtain

I : �−,F : Hom((−)−I, _1.if 1 then B′ else C ′) ` elim< (I,F) : "′(I,F).

Now, if we wanted to obtain from this an element of" (I,D, E) for our abstract binary
cone (I,D, E), we would need to package D, E into an abstract natural transformation
Hom((−)−I, _1.if 1 then B′ else C ′), which we said we don’t have the tools to do.
But this at least demonstrates that we can get very close, serving as a proof-of-concept
for future work.

Chapter 5

Conclusion

5.1 ResearchQuestions Reprised
To review, let us briefly revisit the questions posed in section 0.2.

Question (Research Question 1). What is an appropriate semantics-driven methodol-
ogy for developing directed type theory and synthetic category theory?

An essential characteristic of the present work is that our investigation into the
semantics of directed type theory is prior to (or at least simultaneous with) the
development of its syntax. Unlike many traditional (and even contemporary) formal
theories, we do not pronounce the syntax of our formal language and leave the semantics
to be developed years or decades later, or never at all. Instead, we start with the
semantics—the category model of directed type theory—and deduce what the
semantics of directed type theory ought to be, based on what’s possible in the model.

We had an immanently practical reason for proceeding this way. The basic goal of
directed type theory is to make a theory which is just like undirected type theory in
every way possible, except that symmetry cannot be proved. In simplicial type theory,
this is achieved by adding a singularly directed type—the directed interval—to undirected
type theory, and defining hom-types in terms of the directed interval. But we wanted to
hew closer to Martin-Löf TypeTheory, and posit our hom-types judgmentally, that is, as
generated inductively by refl and eliminated by a J-rule with judgmental V-law. To do
this, we had to surgically weaken the J-rule of MLTT to make it strong enough to still
prove composition (and associativity of composition, transport, map, Hom−to−func,
and so on), but still too weak to prove symmetry. How could we be confident we had
achieved this? The claim, “the J-rule cannot prove symmetry” is, of course, not the kind
of statement which can be proved in the theory itself: it’s a metatheoretic claim, the
kind that demands a semantics. Any attempt to do what we’ve done here—define a
directed type theory with judgmentally-asserted hom-types—needs to proceed from

207 Chapter 5. Conclusion

semantics, to safeguard the directed character of the theory.
The basic structural mechanics of type theory (contexts, substitutions, types, terms,

variables, etc.) can be extended in an endless variety of different ways—type theorists
have studied far too many different systems of type- and term-formers to effectively
survey. In light of such diversity, it becomes desirable to have a modular framework
for reasoning about these different theories and their semantic models. In the theory of
generalized algebra expounded in chapter 1, we have such a framework: the GAT
CwF of categories with familiesmakes the fundamental structural mechanics of type
theory fully mathematically explicit, and the semantics of specific type theories can be
stated as extensions of this GAT. Critically, every such extension automatically has an
initial algebra, meaning that we’re always justified in speaking of the syntax of a type
theory given in this way (without having to resolve a difficult “initiality conjecture”).
This ideally facilitates semantics-driven development of a language: given an intended
model, we can focus our attention on abstractly articulating its salient features in a
GAT, and have the syntax (and the possibility of metatheoretic arguments using the
interpretation of the syntax in our intended model) available automatically.

This is the approach we have taken to developing a directed type theory. The
modularity provided by generalized algebra made it easy to define an array of ‘model
notions’ for directed type theory: polarized CwFs (Definition 2.1.16); zero-ary, unary,
and general neutral-polarized CwFs (Definition 2.3.7,Definition 2.3.25,Definition 2.3.44);
directed CwFs (Definition 3.1.6); (1,1)-DCwFs, (1,0)-DCwFs, (0,1)-DCwFs, and (0,0)-
DCwFs (Definition 3.1.13); and these models augmented with various type-formers and
axioms—to capture more and more detail of the category model. We used the fact that
the category model is a (1,1)-DCwF with specific non-neutral types (e.g. ®2, Set) and
therefore admits an interpretation morphism from the initial such model, the syntax
of (1,1)-directed type theory with these types, to prove symmetry is independent of
the theory. And we used the category model’s situation relative to the syntax model of
(1,1)-directed type theory to perform “ECCM analysis”, that is, to compare (and validate)
our synthetic category-theoretic notions against the analytic category theory of the
category model’s empty context.

Question (Research Question 2). How can the groupoid model’s uses of symmetry be
made explicit in the syntax of type theory?

Our primary task throughout chapter 2 and into chapter 3 was to contend with the
fact that Hofmann and Streicher’s groupoid interpretation of type theory is indeed a
groupoid interpretation of type theory—they sometimes make use of the fact that the
structures in question are groupoids specifically and not arbitrary categories, i.e. they
allow themselves to invert morphisms. To adapt these definitions into the category
model, we enriched the syntax of type theory with polarity annotations making explicit
“which way the morphisms had to be pointed” to get the semantics to work out. Recall
we had several different varieties of these “polarity problems”:

• We had shallow polarity problems, where Hofmann and Streicher use that a
type� in the groupoid model is given by a family of groupoids, i.e. the categories
�(W) have invertible morphisms, but not that the context Γ itself is a groupoid.
These were addressed by introducing the type �− (interpreted as the fiberwise

5.1. Research Questions Reprised 208

opposite of �), and annotating appropriately, e.g. in hom-introduction.
• We had deep polarity problems, where a construction relies on the fact that
the contexts are groupoids. To remedy such problems, we extended our polarity
calculus to operate on contexts, substitutions, and context extension as well. This
allowed us, for instance, to capture that the domain type � in Π(�, �) appears
negatively, i.e. depends contravariantly on the context.

• We encountered a number of places where either the deep polarity calculus
was too cumbersome to be workable, or where a term needed to appear both
positively and negatively. These issues we addressed by reintroducing groupoids
to the theory, in the form of neutral contexts and types. When working in a
neutral context, we had a number of utilities for overcoming the constraints of
the polarity calculus, but, critically, not so much that symmetry became provable.

As we’ll discuss more shortly, there are polarity problems which are not solved by
any of these techniques. In particular, we do not have a mechanism for introducing
a variable that can appear both negatively and positively (i.e. perform some kind of
divariant context extension). An extension of the present theory capable of such a thing
would need to have a more sophisticated polarity calculus; the present work serves as
a template for how we might go about designing such a calculus.

Question (Research Question 3). What is directed equality, and how does it work?

In chapter 3, we advanced several readings of what the presence, absence, and
(non-)uniqueness of a terms of type Hom(C, C ′) represents. Consistent with our ultimate
aim—synthetic 1-category theory—and our semantics in the category model, we can
understand the types of directed type theory as categories, the terms as objects, and the
hom-terms as morphisms. In this reading, the type Hom(C, C ′) having multiple, distinct
inhabitants simply represents the existence of distinct, parallel morphisms—witnessing
that the category� is not a preorder. This perspective naturally adapts to (<,=)-directed
type theory where< and = are not both 1. But we had other ways of reading this data:

• we could think of the types as directed homotopy spaces, the terms as points,
and hom-terms as directed paths;

• we could think of a type as some kind of rewrite system, the terms as expressions,
and the hom-terms as reductions;

• we could think of a type as a state space, the terms as states, and the hom-terms
as processes.

For each idea and construct(ion) in directed type theory, we can try to apply each of
these readings; some things are very natural under every reading (e.g. composition),
whereas some notions are easier to connect to one interpretation than others. But what
we have done here is establish some basic interpretation for what a directed notion
of equality means, and how it works.

As part of this exploration, we developed a few directed extensionality principles
governing the hom-types of structured types. In particular, we characterized the hom-
types of Σ-types—a hom between dependent pairs is a dependent pair of homs—and
of the universe Set of sets, whose homs are given by functions on the corresponding
types. This provides two key ingredients towards a structure morphism principle,
which would stipulate that the hom-types of structured sets are given by their classical

209 Chapter 5. Conclusion

notion of homomorphism. Work on this point continues.

Question (Research Question 4). What does synthetic category-theoretic reasoning
in the directed type theory of the category model look like?

The present work culminates in a brief development synthetic category theory
in (1,1)-directed type theory. This development is done using an informal style
of type theory, rather than the formal syntax—making it more digestible for human
readers (including, potentially, someone who is totally unfamiliar with the underlying
formal calculus). Rather than simply translating category-theoretic concepts (like ‘right
adjoint’) into the language of type theory (a somewhat dubious procedure, given the
tight polarity constraints on our Π-types), we instead modify the practice of category
theory to more naturally fit within the directed-type-theoretic framework. This is done
by recasting the universal mapping properties of category theory as principles of induction.
Though the theory needs expansion to accommodate more elaborate category-theoretic
reasoning (in particular, to work with natural transformations componentwise), the
amount developed here serves as a proof-of-concept.

5.2 Some Suggestions for Future Work
Every aspect of the present work could benefit from further development. Though we
cannot hope to be exhaustive, here are some (we think) worthwhile avenues to explore.

There’s much more to be said about the oneGAT language. Unary parametricity
for oneGAT amounts to the fact that every displayed algebra over the initial algebra
admits a section (for arbitrary GAT), but the corresponding statement of binary, i.e
relational parametricity has not, to our knowledge, been given. Moreover, further study
is needed into the following phenomenon: whenever a GAT G is extended to another
GAT H, we obtain the forgetful functor H-Alg ⇒ G-Alg; under what circumstances
does this functor have a left or right adjoint? Most of the cases we dealt with seemed
to admit appropriate adjoints—free and core groupoids of a category, free PCwF on a
CwF (Proposition 2.2.5), etc.—but this claim needs to be worked out in precise detail.

We also alluded several times to second order generalized algebraic theories. It has
been recently shown [KX24] that SOGATs admit a nice signature language in the same
vein oneGAT, and that SOGAT signatures can be systematically translated to GAT
signatures. However, not all GAT signatures arise in this way; in particular, there hasn’t
(to our knowledge) been a systematic study of capturing substructural features—like
our deep polarity calculus—in the SOGAT setting. Further work is needed to be able to
extend SOGATs, so that notions like neutral-context operations are expressible.

With regards to the directed type theory expounded here, there is much more to
explore. One possible feature to investigate are adding identity types atop the hom-
types of this directed type theory. We indicated two apparent ways to do so: one based
on left adjoints (identity types are the symmetric closure of hom-types, so Hom(C, C ′)
implies Id(C, C ′)) or on right adjoints (identity types are the core of hom-types, so
Id(C, C ′) implies Hom(C, C ′) and Hom(−C ′,−C)). And of course, one could explore a
system with both kinds of identity: consider, for example, a synthetic rewriting system
where Hom(C, C ′) encodes that C reduces to C ′. In this case, the left identity would be

5.2. Some Suggestions for Future Work 210

some kind of extensional equivalence: C and C ′ are identical if they reduce to the same
thing; the right identity would be some kind of literal equality: C and C ′ are only identical
if they reduce to each other. Evaluating systems like this in light of the interpretations
advanced in chapter 3 sounds like a fruitful endeavor.

We also mentioned several times that the present system needs to be extended if
we want to be able to write natural transformations component-wise. As we remarked
above, any putative “natural transformation lambda rule” like Equation 4.4.6 violates
Var-Neg by making the abstracted variable appear both positively and negatively. So
perhaps we need some kind of di-variant context extension, allowing for such variable
abstractions. Or maybe some relaxation of Var-Neg (that still upholds the independence
of symmetry) is possible. Numerous developments in our synthetic category theory
are pending the resolution of this question, such as the proper treatment of presheaf
categories (including a statement of the Yoneda Lemma).

Finally, as we suggested with the name “(1,1)-directed type theory,” there are nu-
merous possible variations on our syntax and semantics. The most obvious candidates
to explore are the adjacent directed type theories: (0,1)-directed type theory (with the
preorder model as its paradigm model) and (2,1)-directed type theory (which would
require the appropriate definition of the 2-category model). Presumably, the latter
would allow for a study of the category of categories within the synthetic setting. We
look forward to such developments.

Bibliography

[ABK+21] Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, Christian Sattler,
and Filippo Sestini. ‘Constructing a universe for the setoid model.’
In: FoSSaCS. 2021, pp. 1–21 (cit. on pp. 9, 14, 78, 90).

[ACKS24] Thorsten Altenkirch, Yorgo Chamoun, Ambrus Kaposi, and
Michael Shulman. ‘Internal parametricity, without an interval’.
In: Proceedings of the ACM on Programming Languages 8.POPL (2024),
pp. 2340–2369 (cit. on p. 10).

[AK16] Thorsten Altenkirch and Ambrus Kaposi.
‘Type theory in type theory using quotient inductive types’.
In: ACM SIGPLAN Notices 51.1 (2016), pp. 18–29 (cit. on p. 10).

[AKS22] Thorsten Altenkirch, Ambrus Kaposi, and Michael Shulman.
Towards Higher Observational Type Theory. 28th International
Conference on Types for Proofs and Programs (TYPES 2022). 2022
(cit. on p. 10).

[AL19] Benedikt Ahrens and Peter LeFanu Lumsdaine. ‘Displayed categories’.
In: Logical Methods in Computer Science 15 (2019)
(cit. on pp. 10, 14, 68, 74, 97).

[ALN25] Benedikt Ahrens, Peter LeFanu Lumsdaine, and Paige Randall North.
‘Comparing Semantic Frameworks for Dependently-Sorted Algebraic
Theories’. In: Programming Languages and Systems. Ed. by Oleg Kiselyov.
Singapore: Springer Nature Singapore, 2025, pp. 3–22.
isbn: 978-981-97-8943-6 (cit. on pp. 9, 36).

[Alt21] Thorsten Altenkirch. ‘Martin Hofmann’s contributions to type theory:
Groupoids and univalence’.
In: Mathematical Structures in Computer Science 31.9 (2021), pp. 953–957
(cit. on p. 10).

[Alt99] Thorsten Altenkirch. ‘Extensional equality in intensional type theory’.
In: Proceedings. 14th Symposium on Logic in Computer Science (Cat. No.
PR00158). IEEE. 1999, pp. 412–420 (cit. on pp. 9–10, 78, 149).

Bibliography 212

[AMS07] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra.
‘Observational equality, now!’ In: Proceedings of the 2007 workshop on
Programming languages meets program verification. 2007, pp. 57–68
(cit. on p. 10).

[AN22] Benedikt Ahrens and Paige Randall North.
‘Univalent foundations and the equivalence principle’.
In: arXiv preprint arXiv:2202.01892 (2022) (cit. on p. 142).

[ANvdW23] Benedikt Ahrens, Paige Randall North, and Niels van der Weide.
‘Bicategorical type theory: semantics and syntax’.
In: Mathematical Structures in Computer Science 33.10 (2023).
issn: 1469-8072 (cit. on pp. 4, 11).

[Awo10] Steve Awodey. Category theory. 2nd ed. Oxford university press, 2010
(cit. on p. 193).

[Awo18] Steve Awodey. ‘Natural models of homotopy type theory’.
In: Mathematical Structures in Computer Science 28.2 (2018), pp. 241–286
(cit. on pp. 9, 36).

[BCDE20] Marc Bezem, Thierry Coquand, Peter Dybjer, and Martıń Escardó. ‘A
Note on Generalized Algebraic Theories and Categories with Families’.
In: arXiv preprint arXiv:2012.08370 (2020) (cit. on p. 9).

[BCH14] Marc Bezem, Thierry Coquand, and Simon Huber.
‘A Model of Type Theory in Cubical Sets’. In: 19th International
Conference on Types for Proofs and Programs (TYPES 2013).
Ed. by Ralph Matthes and Aleksy Schubert. Vol. 26.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2014,
pp. 107–128. isbn: 978-3-939897-72-9.
doi: 10.4230/LIPIcs.TYPES.2013.107.
url: https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.TYPES.2013.107
(cit. on pp. 9–10, 43).

[BD08] Alexandre Buisse and Peter Dybjer.
‘Towards formalizing categorical models of type theory in type theory’.
In: Electronic Notes in Theoretical Computer Science 196 (2008),
pp. 137–151 (cit. on p. 9).

[Bou54] N Bourbaki. ‘LA TRIBU No 34. Congrès super-œcuménique du frigidaire
et des revêtements troués, Murols (17–31 août 1954)’.
In: Archives de l’Association des Collaborateurs de Nicolas Bourbaki (1954)
(cit. on p. 1).

[Car78] John Cartmell.
‘Generalised algebraic theories and contextual categories’.
PhD thesis. Oxford, 1978 (cit. on p. 9).

https://doi.org/10.4230/LIPIcs.TYPES.2013.107
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2013.107
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2013.107

213 Bibliography

[Car86] John Cartmell.
‘Generalised algebraic theories and contextual categories’.
In: Annals of pure and applied logic 32 (1986), pp. 209–243
(cit. on pp. 9, 28).

[CCD21] Simon Castellan, Pierre Clairambault, and Peter Dybjer. ‘Categories
with families: Unityped, simply typed, and dependently typed’.
In: Joachim Lambek: The Interplay of Mathematics, Logic, and Linguistics
(2021), pp. 135–180 (cit. on p. 73).

[CCHM18] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg.
‘Cubical Type Theory: A Constructive Interpretation of the Univalence
Axiom’.
In: 21st International Conference on Types for Proofs and Programs. 2018
(cit. on pp. 9–10, 43).

[CMN24] Fernando Chu, Éléonore Mangel, and Paige Randall North.
‘A directed type theory for 1-categories’. In: 30th International
Conference on Types for Proofs and Programs TYPES 2024–Abstracts. 2024,
p. 205 (cit. on p. 13).

[Cor03] Leo Corry. Modern algebra and the rise of mathematical structures.
Springer Science & Business Media, 2003 (cit. on pp. 1–2).

[Ded63] Richard Dedekind. ‘The Nature and Meaning of Numbers’.
In: Essays on the theory of numbers. Trans. by Wooster Woodruff Beman.
Dover Books on Mathematics.
New York, New York, USA: Dover Publications, 1963, pp. 31–105
(cit. on p. 22).
Trans. of Was sind und was sollen die Zahlen? German. Braunschweig:
Vieweg, 1888. doi: 10.24355/dbbs.084-200902200100-1.

[Dij17] Gabe Dijkstra. ‘Quotient inductive-inductive definitions.’
PhD thesis. University of Nottingham, 2017 (cit. on p. 10).

[Dyb95] Peter Dybjer. ‘Internal type theory’.
In: International Workshop on Types for Proofs and Programs.
Springer. 1995, pp. 120–134 (cit. on p. 9).

[EM45] Samuel Eilenberg and Saunders MacLane.
‘General theory of natural equivalences’. In: Transactions of the
American Mathematical Society 58.2 (1945), pp. 231–294
(cit. on pp. 2, 86).

[GKNB20] Daniel Gratzer, GA Kavvos, Andreas Nuyts, and Lars Birkedal.
‘Multimodal dependent type theory’. In: Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science. 2020, pp. 492–506
(cit. on p. 11).

https://doi.org/10.24355/dbbs.084-200902200100-1

Bibliography 214

[GWB24] Daniel Gratzer, Jonathan Weinberger, and Ulrik Buchholtz.
Directed univalence in simplicial homotopy type theory. 2024.
arXiv: 2407.09146 [cs.LO].
url: https://arxiv.org/abs/2407.09146
(cit. on pp. 11, 150, 156).

[GWB25] Daniel Gratzer, Jonathan Weinberger, and Ulrik Buchholtz.
The Yoneda embedding in simplicial type theory. 2025.
arXiv: 2501.13229 [cs.LO].
url: https://arxiv.org/abs/2501.13229 (cit. on p. 11).

[Har92] Godfrey Harold Hardy. A mathematician’s apology.
Cambridge University Press, 1992 (cit. on p. 96).

[Hof95a] Martin Hofmann. ‘A simple model for quotient types’.
In: International Conference on Typed Lambda Calculi and Applications.
Springer. 1995, pp. 216–234 (cit. on pp. 9–10, 78).

[Hof95b] Martin Hofmann. ‘Extensional concepts in intensional type theory’.
PhD thesis. University of Edinburgh, 1995 (cit. on pp. 10, 149).

[Hof97] Martin Hofmann. ‘Syntax and semantics of dependent types’.
In: Extensional Constructs in Intensional Type Theory. Springer, 1997,
pp. 13–54 (cit. on pp. 9, 43, 100).

[Hof99] Martin Hofmann. ‘Semantical analysis of higher-order abstract syntax’.
In: Proceedings. 14th Symposium on Logic in Computer Science (Cat. No.
PR00158). IEEE. 1999, pp. 204–213 (cit. on p. 10).

[HS95] Martin Hofmann and Thomas Streicher.
‘The groupoid interpretation of type theory’. In: Twenty-five years of
constructive type theory (Venice, 1995) 36 (1995), pp. 83–111
(cit. on pp. 3, 9–10, 80, 101, 103, 138, 149, 158).

[HS99] Martin Hofmann and Thomas Streicher. ‘Lifting grothendieck universes’.
In: Unpublished note 199 (1999), p. 3 (cit. on p. 9).

[Jac93] Bart Jacobs.
‘Comprehension categories and the semantics of type dependency’.
In: Theoretical Computer Science 107.2 (1993), pp. 169–207 (cit. on p. 9).

[Kap17] Ambrus Kaposi.
‘Type theory in a type theory with quotient inductive types’.
PhD thesis. University of Nottingham, 2017 (cit. on p. 10).

[KKA19] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch.
‘Constructing quotient inductive-inductive types’.
In: Proc. ACM Program. Lang. 3.POPL (Jan. 2019).
doi: 10.1145/3290315.
url: https://doi.org/10.1145/3290315
(cit. on pp. 9–10, 14, 25, 34–35, 56, 60, 63, 65, 70–71).

[KRW23] Nikolai Kudasov, Emily Riehl, and Jonathan Weinberger.
Formalizing the∞-Categorical Yoneda Lemma. 2023.
arXiv: 2309.08340 [math.CT] (cit. on p. 11).

https://arxiv.org/abs/2407.09146
https://arxiv.org/abs/2407.09146
https://arxiv.org/abs/2501.13229
https://arxiv.org/abs/2501.13229
https://doi.org/10.1145/3290315
https://doi.org/10.1145/3290315
https://arxiv.org/abs/2309.08340

215 Bibliography

[KX24] Ambrus Kaposi and Szumi Xie. ‘Second-Order Generalised Algebraic
Theories: Signatures and First-Order Semantics’.
In: 9th International Conference on Formal Structures for Computation
and Deduction (FSCD 2024).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. 2024
(cit. on pp. 10, 209).

[Le 16] Lieven Le Bruyn. le lemme de la Gare du Nord. Nov. 2016.
url: http://www.neverendingbooks.org/le-lemme-
de-la-gare-du-nord (cit. on p. 1).

[Le 22] Lieven Le Bruyn. Le Guide Bourbaki: Murol(s). July 2022.
url: http://www.neverendingbooks.org/le-guide-
bourbaki-murols (cit. on p. 1).

[LH11] Daniel R Licata and Robert Harper.
‘2-Dimensional Directed Dependent Type Theory’. In: (2011)
(cit. on pp. 4, 6, 11, 15, 93, 103).

[LLV24] Andrea Laretto, Fosco Loregian, and Niccolò Veltri.
‘Directed equality with dinaturality’.
In: arXiv preprint arXiv:2409.10237 (2024) (cit. on p. 12).

[Lor23] Fosco Loregian. Coend calculus. 2023.
arXiv: 1501.02503 [math.CT] (cit. on p. 12).

[Mac78] Saunders Mac Lane. Categories for the Working Mathematician.
Springer New York, 1978. doi: 10.1007/978-1-4757-4721-8.
url: https://doi.org/10.1007/978-1-4757-4721-8
(cit. on p. 203).

[Man24] Éléonore Mangel. A directed homotopy type theory for 1-categories.
unpublished. 2024 (cit. on p. 13).

[Mar75] Per Martin-Löf. ‘An Intuitionistic Theory of Types: Predicative Part’.
In: Logic Colloquium ’73. Ed. by H.E. Rose and J.C. Shepherdson. Vol. 80.
Studies in Logic and the Foundations of Mathematics. Elsevier, 1975,
pp. 73–118 (cit. on p. 2).

[Mar82] Per Martin-Löf.
‘Constructive Mathematics and Computer Programming’.
In: Logic, Methodology and Philosophy of Science VI.
Ed. by L. Jonathan Cohen, Jerzy Łoś, Helmut Pfeiffer, and
Klaus-Peter Podewski. Vol. 104.
Studies in Logic and the Foundations of Mathematics. Elsevier, 1982,
pp. 153–175 (cit. on p. 2).

[Mog91] Eugenio Moggi. ‘A category-theoretic account of program modules’.
In: Mathematical Structures in Computer Science 1.1 (1991), pp. 103–139
(cit. on p. 9).

[NA24] Jacob Neumann and Thorsten Altenkirch.
‘Synthetic 1-Categories in Directed Type Theory’.
In: arXiv preprint arXiv:2410.19520 (2024) (cit. on pp. 13, 120, 130).

http://www.neverendingbooks.org/le-lemme-de-la-gare-du-nord
http://www.neverendingbooks.org/le-lemme-de-la-gare-du-nord
http://www.neverendingbooks.org/le-guide-bourbaki-murols
http://www.neverendingbooks.org/le-guide-bourbaki-murols
https://arxiv.org/abs/1501.02503
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4757-4721-8

Bibliography 216

[NA25] Jacob Neumann and Thorsten Altenkirch.
‘Synthetic 1-Categories in Directed Type Theory’. In: 30th International
Conference on Types for Proofs and Programs (TYPES 2024).
Ed. by Rasmus Ejlers Møgelberg and Benno van den Berg.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2025
(cit. on p. 13).

[Nas24] Hayato Nasu. ‘An Internal Logic of Virtual Double Categories’.
In: arXiv preprint arXiv:2410.06792 (2024) (cit. on p. 12).

[Nas25] Hayato Nasu. ‘Logical Aspects of Virtual Double Categories’.
In: arXiv preprint arXiv:2501.17869 (2025) (cit. on p. 12).

[NL23] Max S New and Daniel R Licata.
‘A Formal Logic for Formal Category Theory’. In: Foundations of
Software Science and Computation Structures LNCS 13992 (2023), p. 113
(cit. on p. 12).

[Nor19] Paige Randall North. ‘Towards a directed homotopy type theory’. In:
Electronic Notes in Theoretical Computer Science 347 (2019), pp. 223–239
(cit. on pp. 4, 6, 12, 15, 85, 92, 117, 134, 136).

[Nuy15] Andreas Nuyts.
‘Towards a directed homotopy type theory based on 4 kinds of variance’.
In: Mém. de mast. Katholieke Universiteit Leuven (2015) (cit. on pp. 4, 11).

[Rey83] John C Reynolds. ‘Types, abstraction and parametric polymorphism’.
In: Information Processing 83, Proceedings of the IFIP 9th World Computer
Congres. 1983, pp. 513–523 (cit. on pp. 35, 72).

[Rij22] Egbert Rijke. Introduction to Homotopy Type Theory. 2022.
arXiv: 2212.11082 [math.LO].
url: https://arxiv.org/abs/2212.11082
(cit. on pp. iii, 7, 154).

[RS17] E. Riehl and M. Shulman. ‘A type theory for synthetic∞-categories’.
In: Higher Structures 1.1 (2017), pp. 116–193.
doi: 10.2140/hs.2017.1.116. eprint: arXiv:1705.07442
(cit. on pp. 4, 11).

[Shu22] Michael Shulman. Towards a Third-Generation HOTT.
Carnegie Mellon University HoTT Seminar. 2022.
url: https://www.cmu.edu/dietrich/philosophy/
hott/seminars/index.html (cit. on p. 10).

[Str93] Thomas Streicher. ‘Investigations into intensional type theory’.
In: Habilitiation Thesis, Ludwig Maximilian Universität (1993), p. 57
(cit. on p. 3).

[Uem21] Taichi Uemura. ‘Abstract and concrete type theories’.
PhD thesis. University of Amsterdam, 2021 (cit. on pp. 10, 29).

https://arxiv.org/abs/2212.11082
https://arxiv.org/abs/2212.11082
https://doi.org/10.2140/hs.2017.1.116
arXiv:1705.07442
https://www.cmu.edu/dietrich/philosophy/hott/seminars/index.html
https://www.cmu.edu/dietrich/philosophy/hott/seminars/index.html

217 Bibliography

[Uem23] Taichi Uemura. ‘A general framework for the semantics of type theory’.
In: Mathematical Structures in Computer Science 33.3 (Mar. 2023).
issn: 1469-8072. doi: 10.1017/s0960129523000208. url:
http://dx.doi.org/10.1017/S0960129523000208
(cit. on p. 10).

[Uni13] The Univalent Foundations Program.
Homotopy Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study, 2013.
url: https://homotopytypetheory.org/book
(cit. on pp. 7, 10, 165–166).

[VG11] Benno Van Den Berg and Richard Garner. ‘Types are weak l-groupoids’.
In: Proceedings of the london mathematical society 102.2 (2011),
pp. 370–394 (cit. on p. 11).

[Voe14a] Vladimir Voevodsky. The equivalence axiom and univalent models of type
theory. (Talk at CMU on February 4, 2010). 2014.
arXiv: 1402.5556 [math.LO].
url: https://arxiv.org/abs/1402.5556 (cit. on p. 10).

[Voe14b] Vladimir Voevodsky.
‘The origins and motivations of univalent foundations’.
In: The Institute Letter (2014), pp. 8–9 (cit. on p. 10).

[Wea24] Matthew Zachary Weaver. ‘Bicubical Directed Type Theory’.
PhD thesis. Princeton University, 2024 (cit. on p. 11).

[Wei22a] Jonathan Weinberger. ‘A Synthetic Perspective on (∞,1)-Category
Theory: Fibrational and Semantic Aspects’. In: (2022).
doi: 10.26083/TUPRINTS-00020716. url: https:
//tuprints.ulb.tu-darmstadt.de/id/eprint/20716
(cit. on p. 11).

[Wei22b] Jonathan Weinberger. Strict stability of extension types. 2022.
arXiv: 2203.07194 [math.CT].
url: https://arxiv.org/abs/2203.07194 (cit. on p. 11).

[Wei24a] Jonathan Weinberger.
‘Internal sums for synthetic fibered (∞, 1)-categories’.
In: Journal of Pure and Applied Algebra 228.9 (2024), p. 107659
(cit. on p. 11).

[Wei24b] Jonathan Weinberger.
‘Two-sided cartesian fibrations of synthetic (∞, 1)-categories’.
In: Journal of Homotopy and Related Structures 19.3 (2024), pp. 297–378
(cit. on p. 11).

https://doi.org/10.1017/s0960129523000208
http://dx.doi.org/10.1017/S0960129523000208
https://homotopytypetheory.org/book
https://arxiv.org/abs/1402.5556
https://arxiv.org/abs/1402.5556
https://doi.org/10.26083/TUPRINTS-00020716
https://tuprints.ulb.tu-darmstadt.de/id/eprint/20716
https://tuprints.ulb.tu-darmstadt.de/id/eprint/20716
https://arxiv.org/abs/2203.07194
https://arxiv.org/abs/2203.07194

Bibliography 218

[WL20] Matthew Z. Weaver and Daniel R. Licata.
‘A Constructive Model of Directed Univalence in Bicubical Sets’.
In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in
Computer Science. LICS ’20.
Saarbrücken, Germany: Association for Computing Machinery, 2020,
pp. 915–928. isbn: 9781450371049.
doi: 10.1145/3373718.3394794.
url: https://doi.org/10.1145/3373718.3394794
(cit. on p. 11).

https://doi.org/10.1145/3373718.3394794
https://doi.org/10.1145/3373718.3394794

Appendix A

Generalized Algebraic Theories

A.1 Basic structures

A.1.1 Sets

oneGAT

�
⊲ U

pseudoAgda

record Set−Alg where
X : Set

A.1.2 Pointed Sets

oneGAT

�
⊲ U
⊲ El 0

A.1. Basic structures 220

pseudoAgda

record P−Alg where
X : Set
x : X

A.1.3 Bipointed Sets

oneGAT

�
⊲ U
⊲ El 0
⊲ El 1

pseudoAgda

recordB−Alg where
X : Set
x₀ x₁ : X

A.1.4 Natural Number Algebras

oneGAT

�
⊲ U
⊲ El 0
⊲ Π 1 (El 2)

pseudoAgda

record N−Alg where
Nat : Set
zero : Nat
succ : Nat → Nat

221 Appendix A. Generalized Algebraic Theories

A.1.5 Even-Odd Algebras

oneGAT

�
⊲ U
⊲ U
⊲ El 1
⊲ Π 2 (El 2)
⊲ Π 2 (El 4)

pseudoAgda

record EO−Alg where
E : Set
O : Set
z : E
s : E → O
s’ : O → E

A.1.6 Monoids

oneGAT

�
⊲ U
⊲ El 0
⊲ Π 1 (Π 2 (El 3))
⊲ Π 2 (Eq (1 @ 2 @ 0) 0)
⊲ Π 3 (Eq (2 @ 0 @ 3) 0)
⊲ Π 4 (Π 5 (Π 6 (Eq (5 @ 2 @ (5 @ 1 @ 0)) (5 @ (5 @ 2 @ 1) @ 0))))

pseudoAgda

recordMon−Alg where
M : Set
u : M
m : M→M→M
lunit : (x : M) → m u x = x
runit : (x : M) → m x u = x
assoc : (x : M) → (y : M) → (z : M) → m x (m y z) = m (m x y) z

A.2. Quiver-like structures 222

A.1.7 Groups

oneGAT

�
⊲ U
⊲ El 0
⊲ Π 1 (Π 2 (El 3))
⊲ Π 2 (Eq (1 @ 2 @ 0) 0)
⊲ Π 3 (Eq (2 @ 0 @ 3) 0)
⊲ Π 4 (Π 5 (Π 6 (Eq (5 @ 2 @ (5 @ 1 @ 0)) (5 @ (5 @ 2 @ 1) @ 0))))
⊲ Π 5 (El 6)
⊲ Π 6 (Eq (5 @ (1 @ 0) @ 0) 6)
⊲ Π 7 (Eq (6 @ 0 @ (2 @ 0)) 7)

pseudoAgda

record Grp−Alg where
M : Set
u : M
m : M→M→M
lunit : (x : M) → m u x = x
runit : (x : M) → m x u = x
assoc : (x : M) → (y : M) → (z : M) → m x (m y z) = m (m x y) z
inv : M→M
linv : (x : M) → m (inv x) x = u
rinv : (x : M) → m x (inv x) = u

A.2 Quiver-like structures

A.2.1 Quivers

oneGAT

�
⊲ U
⊲ Π 0 (Π 1 U)

223 Appendix A. Generalized Algebraic Theories

pseudoAgda

record Quiv−Alg where
V : Set
E : V → V→ Set

A.2.2 ReflexiveQuivers

oneGAT

�
⊲ U
⊲ Π 0 (Π 1 U)
⊲ Π 1 (El (1 @ 0 @ 0))

pseudoAgda

record rQuiv−Alg where
V : Set
E : V → V→ Set
r : (v : V) → E v v

A.2.3 Preorders

oneGAT

�
⊲ U
⊲ Π 0 (Π 1 U)
⊲ Π 1 (Π 2 (Π (2 @ 1 @ 0) (Π (3 @ 2 @ 1) (Eq 1 0))))
⊲ Π 2 (El (2 @ 0 @ 0))
⊲ Π 3 (Π 4 (Π 5 (Π (5 @ 2 @ 1) (Π (6 @ 2 @ 1) (El (7 @ 4 @ 2))))))

A.2. Quiver-like structures 224

pseudoAgda

record PreOrd−Alg where
X : Set
leq : X → X→ Set
leq[: (x : X) → (x’ : X) → (p : leq x x’) → (q : leq x x’) → p = q
rfl : (x : X) → leq x x
trns : (x : X) → (y : X) → (z : X) → leq x y → leq y z → leq x z

A.2.4 Setoids

oneGAT

�
⊲ U
⊲ Π 0 (Π 1 U)
⊲ Π 1 (Π 2 (Π (2 @ 1 @ 0) (Π (3 @ 2 @ 1) (Eq 1 0))))
⊲ Π 2 (El (2 @ 0 @ 0))
⊲ Π 3 (Π 4 (Π (4 @ 1 @ 0) (El (5 @ 1 @ 2))))
⊲ Π 4 (Π 5 (Π 6 (Π (6 @ 2 @ 1) (Π (7 @ 2 @ 1) (El (8 @ 4 @ 2))))))

pseudoAgda

record Setoid−Alg where
X : Set
eq : X → X→ Set
eq[: (x : X) → (x’ : X) → (p : eq x x’) → (q : eq x x’) → p = q
rfl : (x : X) → eq x x
sym : (x : X) → (y : X) → eq x y → eq y x
trns : (x : X) → (y : X) → (z : X) → eq x y → eq y z → eq x z

225 Appendix A. Generalized Algebraic Theories

A.2.5 Categories

oneGAT

�
⊲ U
⊲ Π 0 (Π 1 U)
⊲ Π 1 (El (1 @ 0 @ 0))
⊲ Π 2 (Π 3 (Π 4 (Π (4 @ 1 @ 0) (Π (5 @ 3 @ 2) (El (6 @ 4 @ 2))))))
⊲ Π 3 (Π 4 (Π (4 @ 1 @ 0) (Eq (3 @ 2 @ 1 @ 1 @ (4 @ 1) @ 0) 0)))
⊲ Π 4 (Π 5 (Π (5 @ 1 @ 0) (Eq (4 @ 2 @ 2 @ 1 @ 0 @ (5 @ 2)) 0)))
⊲ Π 5 (Π 6 (Π 7 (Π 8 (Π (8 @ 3 @ 2) (Π (9 @ 3 @ 2) (Π (10 @ 3 @ 2) (Eq

(9 @ 6 @ 5 @ 3 @ 0 @ (9 @ 6 @ 5 @ 4 @ 1 @ 2)) (9 @ 6 @ 4 @ 3
@ (9 @ 5 @ 4 @ 3 @ 0 @ 1) @ 2))))))))

pseudoAgda

record Cat−Alg where
Obj : Set
Hom : Obj → Obj → Set
id : (X : Obj) → Hom X X
comp : {X Y Z : Obj} → Hom Y Z→ Hom X Y→ Hom X Z
lunit : {X Y : Obj} → (f : Hom X Y) → comp (id Y) f = f
runit : {X Y : Obj} → (f : Hom X Y) → comp f (id X) = f
assoc : {W X Y Z : Obj} →

(e : Hom W X) → (f : Hom X Y) → (g : Hom Y Z) →
comp g (comp f e) = comp (comp g f) e

A.2. Quiver-like structures 226

A.2.6 Groupoids

oneGAT

�
⊲ U
⊲ Π 0 (Π 1 U)
⊲ Π 1 (El (1 @ 0 @ 0))
⊲ Π 2 (Π 3 (Π 4 (Π (4 @ 1 @ 0) (Π (5 @ 3 @ 2) (El (6 @ 4 @ 2))))))
⊲ Π 3 (Π 4 (Π (4 @ 1 @ 0) (Eq (3 @ 2 @ 1 @ 1 @ (4 @ 1) @ 0) 0)))
⊲ Π 4 (Π 5 (Π (5 @ 1 @ 0) (Eq (4 @ 2 @ 2 @ 1 @ 0 @ (5 @ 2)) 0)))
⊲ Π 5 (Π 6 (Π 7 (Π 8 (Π (8 @ 3 @ 2) (Π (9 @ 3 @ 2) (Π (10 @ 3 @ 2) (Eq

(9 @ 6 @ 5 @ 3 @ 0 @ (9 @ 6 @ 5 @ 4 @ 1 @ 2)) (9 @ 6 @ 4 @ 3
@ (9 @ 5 @ 4 @ 3 @ 0 @ 1) @ 2))))))))

⊲ Π 6 (Π 7 (Π (7 @ 1 @ 0) (El (8 @ 1 @ 2))))
⊲ Π 7 (Π 8 (Π (8 @ 1 @ 0) (Eq (7 @ 2 @ 1 @ 2 @ (3 @ 2 @ 1 @ 0) @ 0)

(8 @ 2))))
⊲ Π 8 (Π 9 (Π (9 @ 1 @ 0) (Eq (8 @ 1 @ 2 @ 1 @ 0 @ (4 @ 2 @ 1 @ 0))

(9 @ 1))))

pseudoAgda

record Grpd−Alg where
Obj : Set
Hom : Obj → Obj → Set
id : (X : Obj) → Hom X X
comp : {X Y Z : Obj} → Hom Y Z→ Hom X Y→ Hom X Z
lunit : {X Y : Obj} → (f : Hom X Y) → comp (id Y) f = f
runit : {X Y : Obj} → (f : Hom X Y) → comp f (id X) = f
assoc : {W X Y Z : Obj} →

(e : Hom W X) → (f : Hom X Y) → (g : Hom Y Z) →
comp g (comp f e) = comp (comp g f) e

inv : {X Y : Obj} → Hom X Y→ Hom Y X
linv : {X Y : Obj} → (f : Hom X Y) → comp (inv f) f = id X
rinv : {X Y : Obj} → (f : Hom X Y) → comp f (inv f) = id Y

227 Appendix A. Generalized Algebraic Theories

A.3. Models of Type Theory 228

A.3 Models of Type Theory

A.3.1 Categories with Families (CwFs)

oneGAT

Cat
⊲ El 6
⊲ Π 7 (El (7 @ 0 @ 1))
⊲ Π 8 (Π (8 @ 0 @ 2) (Eq 0 (2 @ 1)))
⊲ Π 9 U
⊲ Π 10 (Π 11 (Π (11 @ 1 @ 0) (Π (3 @ 1) (El (4 @ 3)))))
⊲ Π 11 (Π (2 @ 0) (Eq (2 @ 1 @ 1 @ (11 @ 1) @ 0) 0))
⊲ Π 12 (Π 13 (Π 14 (Π (5 @ 0) (Π (15 @ 3 @ 2) (Π (16 @ 3 @ 2) (Eq (7 @

4 @ 3 @ 0 @ (7 @ 5 @ 4 @ 1 @ 2)) (7 @ 5 @ 3 @ (15 @ 5 @ 4 @ 3
@ 0 @ 1) @ 2)))))))

⊲ Π 13 (Π (4 @ 0) U)
⊲ Π 14 (Π 15 (Π (6 @ 0) (Π (16 @ 2 @ 1) (Π (4 @ 2 @ 1) (El (5 @ 4 @ (8

@ 4 @ 3 @ 1 @ 2)))))))
⊲ Π 15 (Π (6 @ 0) (Π (3 @ 1 @ 0) (Eq (transp (6 @ 2 @ 1) (3 @ 2 @ 2 @

1 @ (16 @ 2) @ 0)) 0)))
⊲ Π 16 (Π 17 (Π 18 (Π (9 @ 0) (Π (6 @ 1 @ 0) (Π (20 @ 4 @ 3) (Π (21 @ 4

@ 3) (Eq (transp (10 @ 6 @ 5 @ 4 @ 3 @ 0 @ 1) (8 @ 5 @ 4 @ 3 @
0 @ (8 @ 6 @ 5 @ (12 @ 5 @ 4 @ 0 @ 3) @ 1 @ 2))) (8 @ 6 @ 4 @
3 @ (20 @ 6 @ 5 @ 4 @ 0 @ 1) @ 2))))))))

⊲ Π 17 (Π (8 @ 0) (El 19))
⊲ Π 18 (Π 19 (Π (10 @ 0) (Π (20 @ 2 @ 1) (Π (8 @ 3 @ (11 @ 3 @ 2 @ 0

@ 1)) (El (22 @ 4 @ (5 @ 3 @ 2)))))))
⊲ Π 19 (Π 20 (Π 21 (Π (12 @ 0) (Π (22 @ 2 @ 1) (Π (10 @ 3 @ (13 @ 3 @

2 @ 0 @ 1)) (Π (24 @ 5 @ 4) (Eq (23 @ 6 @ 5 @ (8 @ 4 @ 3) @ (7 @
5 @ 4 @ 3 @ 2 @ 1) @ 0) (7 @ 6 @ 4 @ 3 @ (23 @ 6 @ 5 @ 4 @ 2
@ 0) @ (transp (13 @ 6 @ 5 @ 4 @ 3 @ 2 @ 0) (11 @ 6 @ 5 @ (15
@ 5 @ 4 @ 2 @ 3) @ 0 @ 1))))))))))

⊲ Π 20 (Π (11 @ 0) (El (21 @ (4 @ 1 @ 0) @ 1)))
⊲ Π 21 (Π (12 @ 0) (El (9 @ (5 @ 1 @ 0) @ (12 @ (5 @ 1 @ 0) @ 1 @ (2

@ 1 @ 0) @ 0))))
⊲ Π 22 (Π 23 (Π (14 @ 0) (Π (24 @ 2 @ 1) (Π (12 @ 3 @ (15 @ 3 @ 2 @ 0

@ 1)) (Eq (24 @ 4 @ (9 @ 3 @ 2) @ 3 @ (6 @ 3 @ 2) @ (8 @ 4 @ 3
@ 2 @ 1 @ 0)) 1)))))

⊲ Π 23 (Π 24 (Π (15 @ 0) (Π (25 @ 2 @ 1) (Π (13 @ 3 @ (16 @ 3 @ 2 @ 0
@ 1)) (Eq (transp (5 @ 4 @ 3 @ 2 @ 1 @ 0) (transp (15 @ 4 @ (10
@ 3 @ 2) @ 3 @ 2 @ (7 @ 3 @ 2) @ (9 @ 4 @ 3 @ 2 @ 1 @ 0)) (13
@ 4 @ (10 @ 3 @ 2) @ (17 @ 4 @ 3 @ 1 @ 2) @ (9 @ 4 @ 3 @ 2 @
1 @ 0) @ (6 @ 3 @ 2)))) 0)))))

⊲ Π 24 (Π (15 @ 0) (Eq (7 @ (8 @ 1 @ 0) @ 1 @ 0 @ (5 @ 1 @ 0) @ (4 @
1 @ 0)) (24 @ (8 @ 1 @ 0))))

229 Appendix A. Generalized Algebraic Theories

pseudoAgda

record CwF−Alg where
Con : Set
Sub : Con → Con→ Set
id : (X : Con) → Sub X X
comp : {X Y Z : Con} → Sub Y Z→ Sub X Y→ Sub X Z
lunit : {X Y : Con} → (f : Sub X Y) → comp (id Y) f = f
runit : {X Y : Con} → (f : Sub X Y) → comp f (id X) = f
assoc : {W X Y Z : Con} →

(e : Sub W X) → (f : Sub X Y) → (g : Sub Y Z) →
comp g (comp f e) = comp (comp g f) e

empty : Con
n : (Γ : Con) → Sub Γ empty
[n : {Γ : Con} → (f : Sub Γ empty) → f = n Γ
Ty : Con → Set
substTy : {∆ Γ : Con} → Sub ∆ Γ →Ty Γ→Ty ∆
idTy : {Γ : Con} → (A : Ty Γ) → substTy (id Γ) A = A
compTy : {Θ ∆ Γ : Con} → (A : Ty Γ) →

(X : Sub Θ ∆) → (W : Sub ∆ Γ) →
substTy W (substTy X A) = substTy (comp W X) A

Tm : (Γ : Con) → Ty Γ→ Set
substTm : {∆ Γ : Con}{A : Ty Γ} →

(W : Sub ∆ Γ) → Tm Γ A→ Tm ∆ (substTy W A)
idTm : {Γ : Con}{A : Ty Γ} → (t : Tm Γ A) → substTm (id Γ) t = t
compTm : {Θ ∆ Γ : Con}{A : Ty Γ} → (t : Tm Γ A) →

(X : Sub Θ ∆) → (W : Sub ∆ Γ) →
substTm W (substTm X t) = substTm (comp W X) t

ext : (Γ : Con) → Ty Γ →Con
pair : {∆ Γ : Con}{A : Ty Γ} →

(W : Sub ∆ Γ) → Tm ∆ (substTy W A) → Sub ∆ (ext Γ A)
pair_nat : {Θ ∆ Γ : Con}{A : Ty Γ} →

(W : Sub ∆ Γ) → (t : Tm ∆ (substTy W A)) → (X : Sub Θ ∆) →
comp (pair W t) X = pair (comp W X) (substTm X t)

p : {Γ : Con} → (A : Ty Γ) → Sub (ext Γ A) Γ
v : {Γ : Con} → (A : Ty Γ) → Tm (ext Γ A) (substTy (p A) A)
ext_V₁ : {∆ Γ : Con}{A : Ty Γ} →

(W : Sub ∆ Γ) → (t : Tm ∆ (substTy W A)) →
comp (p A) (pair W t) = W

ext_V₂ : {∆ Γ : Con}{A : Ty Γ} →
(W : Sub ∆ Γ) → (t : Tm ∆ (substTy W A)) →
substTm (pair W t) (v A) = t

ext_[: {Γ : Con}{A : Ty Γ} → pair (p A) (v A) = id (ext Γ A)

A.3. Models of Type Theory 230

A.3.2 CwFs /w unit type

oneGAT

CwF
⊲ Π 25 (El (16 @ 0))
⊲ Π 26 (Π 27 (Π (27 @ 1 @ 0) (Eq (18 @ 2 @ 1 @ 0 @ (3 @ 1)) (3 @ 2))))
⊲ Π 27 (El (14 @ 0 @ (2 @ 0)))
⊲ Π 28 (Π 29 (Π (29 @ 1 @ 0) (Eq (transp (4 @ 2 @ 1 @ 0) (16 @ 2 @ 1

@ (5 @ 1) @ 0 @ (3 @ 1))) (3 @ 2))))
⊲ Π 29 (Π (20 @ (12 @ 0 @ (4 @ 0))) (Π (17 @ 1 @ (20 @ 1 @ (13 @ 1 @

(5 @ 1)) @ (12 @ 1 @ 1 @ (5 @ 1) @ (29 @ 1) @ (3 @ 1)) @ 0)) (El
(18 @ (14 @ 2 @ (6 @ 2)) @ 1))))

⊲ Π 30 (Π (21 @ (13 @ 0 @ (5 @ 0))) (Π (18 @ 1 @ (21 @ 1 @ (14 @ 1 @
(6 @ 1)) @ (13 @ 1 @ 1 @ (6 @ 1) @ (30 @ 1) @ (4 @ 1)) @ 0)) (Eq
(18 @ 2 @ (15 @ 2 @ (7 @ 2)) @ 1 @ (14 @ 2 @ 2 @ (7 @ 2) @ (31
@ 2) @ (5 @ 2)) @ (3 @ 2 @ 1 @ 0)) 0)))

231 Appendix A. Generalized Algebraic Theories

A.3.3 CwFs /w bool type

oneGAT

CwF
⊲ Π 25 (El (16 @ 0))
⊲ Π 26 (Π 27 (Π (27 @ 1 @ 0) (Eq (18 @ 2 @ 1 @ 0 @ (3 @ 1)) (3 @ 2))))
⊲ Π 27 (El (14 @ 0 @ (2 @ 0)))
⊲ Π 28 (Π 29 (Π (29 @ 1 @ 0) (Eq (transp (4 @ 2 @ 1 @ 0) (16 @ 2 @ 1

@ (5 @ 1) @ 0 @ (3 @ 1))) (3 @ 2))))
⊲ Π 29 (El (16 @ 0 @ (4 @ 0)))
⊲ Π 30 (Π 31 (Π (31 @ 1 @ 0) (Eq (transp (6 @ 2 @ 1 @ 0) (18 @ 2 @ 1

@ (7 @ 1) @ 0 @ (3 @ 1))) (3 @ 2))))
⊲ Π 31 (Π (22 @ (14 @ 0 @ (6 @ 0))) (Π (19 @ 1 @ (22 @ 1 @ (15 @ 1 @

(7 @ 1)) @ (14 @ 1 @ 1 @ (7 @ 1) @ (31 @ 1) @ (5 @ 1)) @ 0)) (Π
(20 @ 2 @ (23 @ 2 @ (16 @ 2 @ (8 @ 2)) @ (15 @ 2 @ 2 @ (8 @ 2)
@ (32 @ 2) @ (4 @ 2)) @ 1)) (El (21 @ (17 @ 3 @ (9 @ 3)) @ 2)))))

⊲ Π 32 (Π (23 @ (15 @ 0 @ (7 @ 0))) (Π (20 @ 1 @ (23 @ 1 @ (16 @ 1 @
(8 @ 1)) @ (15 @ 1 @ 1 @ (8 @ 1) @ (32 @ 1) @ (6 @ 1)) @ 0)) (Π
(21 @ 2 @ (24 @ 2 @ (17 @ 2 @ (9 @ 2)) @ (16 @ 2 @ 2 @ (9 @ 2)
@ (33 @ 2) @ (5 @ 2)) @ 1)) (Eq (21 @ 3 @ (18 @ 3 @ (10 @ 3)) @
2 @ (17 @ 3 @ 3 @ (10 @ 3) @ (34 @ 3) @ (8 @ 3)) @ (4 @ 3 @ 2
@ 1 @ 0)) 1))))

⊲ Π 33 (Π (24 @ (16 @ 0 @ (8 @ 0))) (Π (21 @ 1 @ (24 @ 1 @ (17 @ 1 @
(9 @ 1)) @ (16 @ 1 @ 1 @ (9 @ 1) @ (33 @ 1) @ (7 @ 1)) @ 0)) (Π
(22 @ 2 @ (25 @ 2 @ (18 @ 2 @ (10 @ 2)) @ (17 @ 2 @ 2 @ (10 @
2) @ (34 @ 2) @ (6 @ 2)) @ 1)) (Eq (22 @ 3 @ (19 @ 3 @ (11 @ 3))
@ 2 @ (18 @ 3 @ 3 @ (11 @ 3) @ (35 @ 3) @ (7 @ 3)) @ (5 @ 3 @
2 @ 1 @ 0)) 0))))

A.3. Models of Type Theory 232

A.3.4 CwFs /w Π-type

oneGAT

CwF
⊲ Π 25 (Π (16 @ 0) (Π (17 @ (9 @ 1 @ 0)) (El (18 @ 2))))
⊲ Π 26 (Π 27 (Π (27 @ 1 @ 0) (Π (19 @ 1) (Π (20 @ (12 @ 2 @ 0)) (Eq (20

@ 4 @ 3 @ 2 @ (5 @ 3 @ 1 @ 0)) (5 @ 4 @ (20 @ 4 @ 3 @ 2 @ 1)
@ (20 @ (13 @ 4 @ (20 @ 4 @ 3 @ 2 @ 1)) @ (13 @ 3 @ 1) @ (12
@ (13 @ 4 @ (20 @ 4 @ 3 @ 2 @ 1)) @ 3 @ 1 @ (28 @ (13 @ 4 @
(20 @ 4 @ 3 @ 2 @ 1)) @ 4 @ 3 @ 2 @ (10 @ 4 @ (20 @ 4 @ 3 @ 2
@ 1))) @ (9 @ 4 @ (20 @ 4 @ 3 @ 2 @ 1))) @ 0)))))))

⊲ Π 27 (Π (18 @ 0) (Π (19 @ (11 @ 1 @ 0)) (Π (16 @ (12 @ 2 @ 1) @ 0)
(El (17 @ 3 @ (5 @ 3 @ 2 @ 1))))))

⊲ Π 28 (Π (19 @ 0) (Π (20 @ (12 @ 1 @ 0)) (Π (17 @ 2 @ (5 @ 2 @ 1 @
0)) (Π (18 @ 3 @ 2) (El (19 @ 4 @ (22 @ 4 @ (15 @ 4 @ 3) @ (14 @
4 @ 4 @ 3 @ (31 @ 4) @ (transp−¹ (21 @ 4 @ 3) (0))) @ 2)))))))

⊲ Π 29 (Π 30 (Π (30 @ 1 @ 0) (Π (22 @ 1) (Π (23 @ (15 @ 2 @ 0)) (Π (20
@ (16 @ 3 @ 1) @ 0) (Eq (transp (8 @ 5 @ 4 @ 3 @ 2 @ 1) (20 @ 5
@ 4 @ 3 @ (9 @ 4 @ 2 @ 1) @ (7 @ 4 @ 2 @ 1 @ 0))) (7 @ 5 @ (24
@ 5 @ 4 @ 3 @ 2) @ (24 @ (17 @ 5 @ (24 @ 5 @ 4 @ 3 @ 2)) @
(17 @ 4 @ 2) @ (16 @ (17 @ 5 @ (24 @ 5 @ 4 @ 3 @ 2)) @ 4 @ 2
@ (32 @ (17 @ 5 @ (24 @ 5 @ 4 @ 3 @ 2)) @ 5 @ 4 @ 3 @ (14 @ 5
@ (24 @ 5 @ 4 @ 3 @ 2))) @ (13 @ 5 @ (24 @ 5 @ 4 @ 3 @ 2))) @
1) @ (20 @ (17 @ 5 @ (24 @ 5 @ 4 @ 3 @ 2)) @ (17 @ 4 @ 2) @ (16
@ (17 @ 5 @ (24 @ 5 @ 4 @ 3 @ 2)) @ 4 @ 2 @ (32 @ (17 @ 5 @
(24 @ 5 @ 4 @ 3 @ 2)) @ 5 @ 4 @ 3 @ (14 @ 5 @ (24 @ 5 @ 4 @ 3
@ 2))) @ (13 @ 5 @ (24 @ 5 @ 4 @ 3 @ 2))) @ 1 @ 0))))))))

⊲ Π 30 (Π (21 @ 0) (Π (22 @ (14 @ 1 @ 0)) (Π (19 @ (15 @ 2 @ 1) @ 0)
(Π (20 @ 3 @ 2) (Eq (6 @ 4 @ 3 @ 2 @ (7 @ 4 @ 3 @ 2 @ 1) @ 0)
(20 @ 4 @ (17 @ 4 @ 3) @ 2 @ (16 @ 4 @ 4 @ 3 @ (33 @ 4) @
(transp−¹ (23 @ 4 @ 3) (0))) @ 1))))))

⊲ Π 31 (Π (22 @ 0) (Π (23 @ (15 @ 1 @ 0)) (Π (20 @ 2 @ (8 @ 2 @ 1 @
0)) (Eq (7 @ 3 @ 2 @ 1 @ (6 @ (17 @ 3 @ 2) @ (24 @ (17 @ 3 @ 2)
@ 3 @ (14 @ 3 @ 2) @ 2) @ (24 @ (17 @ (17 @ 3 @ 2) @ (24 @ (17
@ 3 @ 2) @ 3 @ (14 @ 3 @ 2) @ 2)) @ (17 @ 3 @ 2) @ (16 @ (17 @
(17 @ 3 @ 2) @ (24 @ (17 @ 3 @ 2) @ 3 @ (14 @ 3 @ 2) @ 2)) @ 3
@ 2 @ (32 @ (17 @ (17 @ 3 @ 2) @ (24 @ (17 @ 3 @ 2) @ 3 @ (14
@ 3 @ 2) @ 2)) @ (17 @ 3 @ 2) @ 3 @ (14 @ 3 @ 2) @ (14 @ (17 @
3 @ 2) @ (24 @ (17 @ 3 @ 2) @ 3 @ (14 @ 3 @ 2) @ 2))) @ (13 @
(17 @ 3 @ 2) @ (24 @ (17 @ 3 @ 2) @ 3 @ (14 @ 3 @ 2) @ 2))) @
1) @ (transp (8 @ (17 @ 3 @ 2) @ 3 @ (14 @ 3 @ 2) @ 2 @ 1) (20
@ (17 @ 3 @ 2) @ 3 @ (14 @ 3 @ 2) @ (9 @ 3 @ 2 @ 1) @ 0)) @
(13 @ 3 @ 2))) 0))))

233 Appendix A. Generalized Algebraic Theories

A.4 Models of Polarized and Directed TypeTheory

A.4.1 Polarized Categories with Families (PCwFs)

oneGAT

CwF
⊲ Π 25 (El 26)
⊲ Π 26 (Π 27 (Π (27 @ 1 @ 0) (El (28 @ (3 @ 2) @ (3 @ 1)))))
⊲ Π 27 (Π (18 @ 0) (El (19 @ 1)))
⊲ Eq (2 @ 21) 21
⊲ Π 29 (Eq (3 @ 0 @ 0 @ (28 @ 0)) (28 @ (4 @ 0)))
⊲ Π 30 (Π 31 (Π 32 (Π (32 @ 2 @ 1) (Π (33 @ 2 @ 1) (Eq (8 @ 4 @ 2 @

(32 @ 4 @ 3 @ 2 @ 0 @ 1)) (32 @ (9 @ 4) @ (9 @ 3) @ (9 @ 2) @ (8
@ 3 @ 2 @ 0) @ (8 @ 4 @ 3 @ 1)))))))

⊲ Π 31 (Π 32 (Π (32 @ 1 @ 0) (Π (24 @ 1) (Eq (7 @ 3 @ (24 @ 3 @ 2 @ 1
@ 0)) (24 @ 3 @ 2 @ 1 @ (7 @ 2 @ 0))))))

⊲ Π 32 (Eq (7 @ (7 @ 0)) 0)
⊲ Π 33 (Π 34 (Π (34 @ 1 @ 0) (Eq (transp (3 @ 1) (transp (3 @ 2) (9 @

(10 @ 2) @ (10 @ 1) @ (9 @ 2 @ 1 @ 0)))) 0)))
⊲ Π 34 (Π (25 @ 0) (Eq (8 @ 1 @ (8 @ 1 @ 0)) 0))

pseudoAgda

record PCwF−Alg where
…
neg_Con : Con → Con
neg_Sub : {∆ Γ : Con} → Sub ∆ Γ→ Sub (neg_Con ∆) (neg_Con Γ)
neg_Ty : {Γ : Con} → Ty Γ →Ty Γ
neg_empty : neg_Con empty = empty
neg_id : {Γ : Con} → neg_Sub (id Γ) = id (neg_Con Γ)
neg_comp : {Θ ∆ Γ : Con} → (X : Sub Θ ∆) → (W : Sub ∆ Γ) →

neg_Sub (comp W X) = comp (neg_Sub W) (neg_Sub X)
neg_nat : {∆ Γ : Con} → (W : Sub ∆ Γ) → (A : Ty Γ) →

neg_Ty (substTy W A) = substTy W (neg_Ty A)
invl_Con : (Γ : Con) → neg_Con (neg_Con Γ) = Γ
invl_Sub : {∆ Γ : Con} → (W : Sub ∆ Γ) → neg_Sub (neg_Sub W) = W
invl_Ty : {Γ : Con} → (A : Ty Γ) → neg_Ty (neg_Ty A) = A

	Abstract
	Acknowledgments
	Contents
	Introduction
	Motivation
	Research Questions
	Related Work
	Contribution
	Metatheory and Notation

	List of GATs & Structures
	Type Theory as a Generalized Algebraic Theory
	Specifying Structures as GATs
	The Semantics of Type Theory as a GAT
	Categories with Families
	Type Formers

	A Signature Language for GATs
	Introducing GATs
	Eliminating GATs
	Initial Algebras
	Concrete CwFs

	Fibrancy and the Looking-Glass Question

	The Polarity Calculus
	Polarity Structure of the Preorder and Category Models
	Theory of Polarized CwFs
	Neutrality
	Phase Zero
	Phase One
	Phase Two+

	Directed Type Theory
	Directed Equality Types
	Observations and Universes
	Opposites
	-Types
	Universes

	Synthetic-Inductive Category Theory
	An Introduction to Informal (1,1)-Directed Type Theory
	Neutral-Polarized Type Theory
	Directed Type Theory
	Type Formers
	Inductive Category Theory

	Binary (Co)Products
	Binary Products—Informal
	Binary Products—Formal
	Binary Coproducts

	Pullbacks and Pushouts
	Functors and Adjoints
	Functors and Natural Transformations—Informal
	Functors and Natural Transformations—Formal
	Adjoints—Informal

	Conclusion
	Research Questions Reprised
	Some Suggestions for Future Work

	Bibliography
	Generalized Algebraic Theories
	Basic structures
	Sets
	Pointed Sets
	Bipointed Sets
	Natural Number Algebras
	Even-Odd Algebras
	Monoids
	Groups

	Quiver-like structures
	Quivers
	Reflexive Quivers
	Preorders
	Setoids
	Categories
	Groupoids

	Models of Type Theory
	Categories with Families (CwFs)
	CwFs /w unit type
	CwFs /w bool type
	CwFs /w -type

	Models of Polarized and Directed Type Theory
	Polarized Categories with Families (PCwFs)

